be known by the Ingenious, and fich as are defin to Profit, or render themfelves Accomplifhed. Chiefly intended for the Inftrution of Young S lars, who are acquainted with no other than t Native Language ; But may alfo be very ufefe other Perfons that have made fome 10 g gets in Studies of the faid Arts.

The Second Edition

By Fobss Newton D. D.
LONDON, Printed by A. NiWourn, for The Pafl at the Thrce Bibles and Stiri, on Lardin-Eridere, 16

Licenfed,
 t

 OCtober 24th, 677

 OCtober 24th, 677}

READER:

Have perhaps troubled thee and the Press al. ready too much; if it be fo, I hall however hope, that I am - not unpardonable, becaufe I have fill intended well to the good -f the Publick; every one I think fefires to give their Children the belt Education that they can ; But the higheft degree of Education is not alovays belt: And 1 mutt beg thy Pardon, if I do offend thee, in laying, That next to the bare Reading of Englifh, the fending of Children to the Latin School, is not the belt way of giving them Education, for :c
that were granted, which I mult deny, That the Latin and Greek Tongues were not only neceffary for all Children whatfoever, but alfo more eafily learned, than the liberal Arts; yer Writing is fo neeceflary to be firf Learned, that it is almoft impoffible to attain the other without it.

And as Writing is very neceflary in order to the Latin and Greek Tongues, fo is it alfo neceffary. in order to the true Spelling and Underftanding of the Englifh, or any other Native Language; and indeed the Art of Grammar is the only One of the Seven, that clames 2 propriety in every Na tive Language: As for the other: Arts, they are the fame, in allLanguages; the Rules of Arithmetick and Geometry, of Mufick and Aifronomy, of Retorick and Lon-

[]

gick, are in the General, as Intel. ligible in every Language; as in the Latin and Greek, or any other; and therefore to them that bave no other need of the Latin and Grick Tongues, than the Learning of thefe Arts, may, I con. ceive, Spare that pains; and Learil them in their own Native Language, or as many of them, as will be thought ufeful for them, in their feveral Stations in the World. Again, thefe Arts are notonly attainable in every Native Language, but more eafily attainable than the Latin and Greek Tongues are, to which fome feem defirous to confine the Arts; and being fo attained, do render other Languages more eafie allo.
\because For thefe, and the like Reafons, as I have already Publifhed diftinct Introductions to every Art; excer

[]

$\mathcal{M a f i c k}$; for which I refer thee to Mr. Job. Playford's Introduction; fo now I have been eafily perfwaded, to give thee a fhort view of them altogether; he that defires more full Inftruction, may perufe the feveral Tracts by me Written, in our own, or thofe that are Written by other Men in other Languages. The whole Building is but fmall, and therefore I will not make the Porch great, I have placed the Arts in that Order, in which, (with fubmiffion to better Judgments) I do conceive they fhould be learned: And alchough I cannot lay now, as I have in fome of my Epifles preceding my former Tracts, that there is not fo much as one Mathematical Scbool inEngland, for now there is by the Bounty of King Charles the Second a fair one Erected in Christs Hofpital, London,
and a worthy Mafter chofen to Manage it, by Name Mr. Edward Tagest, who is so well known, that he needeth no Mans Commendations to exprefs his VVorth; Yet thus much Iftill declare to be my opinion, That it is more proper, that the Latia School Thould be fupplied with Scholars from the Matbematical, than that the Mathematical Chould be fupplied from the Latin and Greek Schiools: However by this means, I hope it will come to pals, that afterages will be fupplied with that. Knowledge in Arithmetick, Geometry, and Afronomy, which hitherto our Writing-Mafters have not boen able to Teach, nor our Granmar Mafters eicher able or willing to undertake; fo that in a Word, There are few SchoolMafters that can Teach ,
things: But yet amongt them,
the well Accomplifhed Mr. John Colfon, now living in Goodmans-fields, with whom I have not had the happinefs to be immediately Acquainted, yet Report hath rendred him to the World a worthy Mafter and Teacher : of that Science. And there are not many Tutors in eicher of our Univerfio ties that do; and yet the ufefulnefs of thele Arts cannot be denied, and therefore my hopes are, that fome Univerfal Encouragement svill yet be given for the Teaching of them.
And could I be fo happy, as to fee fomething done in order to it, I thould thipk my felf abundantly fatisfied for all the Pains I have bi-: therto taken, and hall ever reft,

Thine and bis Conntrys Servant,",
JOHNNEWTON.
[]

THE
 PREFACE

0 R',

1XTRODUCTIOX

 TOTHE
Arts and Sciences in the General:

 Ifdem is the principal thing, and therefore faith Solomon, Get Wifdam, and with all thy getring, get Underttanding:Pro.4.7. Andwhat is meant byWifdom, Holy Job tells us, Job 28. 28 . Behold the Fear of the Lord, thiat is Wifdom, and to depart from Evil, that is Underftanding. They who feek for th: W. 1 ?
[].
Waddom, are the only true Philolophers: for Philofophy is nothing elfe but the love of Wisdom, and they who Fear God, and depart frons Evil; are the loovers of that, which is only real and true Wisdom: Noon for as much, as we car.. not be fail to fear God, except we know him, Widdom may well be defined to be the \mathcal{K} nowledge of God, and the things that are of him, the knowledge of things Divine and Humane, and this is commonly called' Phitofxphy, bat fomewhat imppropertly, for Philofophy is not properly the Knowledge it felt, but the love of that Knbuledop; and ibhat fever Art or Scichance doth conduce to this K norledge, may be rightly and truly called Sophia orWif. donn; and because all Men gould love fact K howledge and Delight in it, I ball. not gainsay the general Name by which it is called cuftom will have it $\int a$, let it therefore be called Philosophy.
Sophia then, or Philofophia, Wifdom, or the love of Widdom, is the Knowledge. of all Arts and Sciences, which any way to conduce to this K sample de of God: And Anise fond of them do thercuntoconduce movie;

Fig. 4
EFGHKLMNDA

Goung Goog
F

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fir g. 10

Google
[]
more, forme lefs : Thefe arts may be diftinguifbed into two Sorts, Superiour and Inferiour.

The Superiour Arts are fowr;
i. Theology ar Divinity, whofe Subject is the Divine Effence.
2. Metaphy ficks,otherwife called the firft Philofophy; whofe Swbjeit is, Being in common, or Being as Being.
3. Phyficks, who e Subject is the Krompledge of Natur al Bodies; as they are Natural.
4. Ethicks,whofe Subject is Morality, or the DoEtrine of Manners and Civil Honefly.

The Inferiour Arts are of two forts;

1. Internal or Liberal Arts, fo called, becaufe they are attained by the faculties of the Soul, which is a liberal or free agent, and not by the Labour or Miniftry of the Hands; and thefe are feven:
2. Grammar,
3. Arithmetick,
4. Geometry,
5. Mufick, ($5 \begin{aligned} & \text { 5. Aftronomy, } \\ & \text { 6. Rhetorick, } \\ & \text { 7. Eogick. }\end{aligned}$
[]
And the fe are the Subjects of this litthe Book.
6. The External or Mechanical and Manual Arts, fo called, because they depend more upon the labour of the Body, than the Mind; fuctiare the Arts of Tilluge; .Hunting, Fifhing, Fowling, Weaving, and many more, not needful to be named, because no part of the ensuing Difcourle.
\qquad

THE

ACADEMY. The FIRST PART.

 OF GRAMMAR.

 OF GRAMMAR. BOOK I.

CHAP. 1.

Of Letters and Syllables.

Rammer is an ART which Teacheth how to Speak and Write truly.

The Parts thereof are Foar, Letters, Syllables, Words, and Sentences. A Letter is a Character, or Index, of a fimple found. And in the Engligh Tongue there are Twenty four.

The which Letters are diftinguifhed from one another, partly by their bhaces, and partly by their founds.

The Englifh atarcuy.
In reference to their hares, they are difinguifhed by three different Charatters, the reman, Itatick, and black En, lifh.

And in each of thefe Characters there is the great and the fmall Letter.

In the Roman Character, the Great Letter is thus formed,

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \mathrm{~K}_{\mathrm{V}}, \mathrm{~L}_{\mathrm{M}} \mathrm{M}, \mathrm{~N},
$$

$$
O, P, Q, R, S, T, U, V, W, X, Y, Z .
$$

The fmall thus,

$$
\begin{aligned}
& \text { a, bl }{ }_{2} c, d, e_{j} f, g, h, i, j, k, l, m, n, o, p, q, \\
& r, f, s, t, u, v, w, x, y, z .
\end{aligned}
$$

The great and fmall Italick Letters are triade thus,

The great and fmall black Englifh thus,

$\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{b}, \mathfrak{e}, \mathfrak{f}, \mathfrak{b}, \mathfrak{b}, \mathfrak{i}, \mathfrak{j}, \mathfrak{k}, \boldsymbol{l}, \mathfrak{m}, \mathfrak{n}, \boldsymbol{b}, \boldsymbol{p}, \mathfrak{d}$,

The great Letters are ufed in the begirning of proper Names, Emphatical words, sentences, and Verfes. The Letter I whea it ftands alone, is always written with a great, Charater.

There

$$
\begin{aligned}
& A, B, C, D, E, F, G, H, 1, \mathcal{F}, K, L, M, N, O_{2} \\
& \text { P, } Q, R, S, T, V, U, W, X, T, Z \text {. } \\
& a, b, c, d, e, f, g, b, i, j, k, l, m, n, o, p, q, r \text {, } \\
& \int_{n} s, t, u, v, w_{2}, x_{i} y_{1} z \text {. }
\end{aligned}
$$

The Englih gradediy:
Thefe Twenty and four Letters are divided into Vowels and Confonants.

A Vowel is a letter which maketh a full and perfect found of it felf, and they are five, a, e, i, o, x, befides the Greck Vowel y.

A Consonant is a letter which maketh a found by help of a Vowel, and thefe are Eighteen, befides the letters j, v, and y, which femetimes are Confonants alfo.

Of the eighteen Confonants, rome are mates, as there eight, b, c, d, g, k, p, q, and t. Some femi-Vowels, as thefe eighit, f, l, m, n, r, s, x, and x, of which the fe font, l, m, n, r, are alfo called Liquids, x, and z; double Confonants; and the other two, b, and w, irregular Letters.

Some of thefe Letters, as well Voweis as Confonants, have founds very different from their common names. Thus the let. ter c, hefore e, and i, is founded like $\sqrt{ }$, but before a, b, μ, it is founded like k, as in Cat, cot, ckt.

The Letter f, is fometimes founded according to its ufual name, as when it follows a Vowel, as in if, of, effeminate, but when it begins a W.ord or Syllable, it is Sounded fer, as in feer, foolifb.

The Letter g, before' $n, 0$, and n; is founded hard, thus, ghee, as in gad, God, gut, but before e and $;$ it is fometimes, but not always, founded according to its ufual name isec; as in danger, ginger.

82

The Letter b, is never founded according to its name ach, but thus, bre, as in bend, belp; bims.

Ihe letters j and v, when they come ber. fore themfelves, or any other Vowel in the Eame Syllable, become Conformants, and have different fourds from their ufual names, j is pronounced like g foft, thus $j i$ is pronounced like $g i$, inginger, v is pronounced vee, or vu, as in vanijh, vime; and when they are thus founded, their frape is alfo changed, and hence forme would have them to be diltinct letters, and would bave the number of our letters to be not 24, but 26.

The Liquids l, m, n, and r, when they begin a Word or Syllable, are founded thus, lee; mene, ree, as in light, mind, need, read.

The letter q, hath alwaya s after it, to help its found, but is not to be founded according to its name en, but que, as in queftion.

The letter f, when it begins a word of Syllable is to be founded thus; fce, as in fad, fecret, but in the end of a word, or between two Vowels or Dipthongs, it hath for the mof part the found of z, as in eafie, bofom.

The letter t before i, if another Vowel followeth, hath the found of f, as in Egyptian, patience; but whepit followeth for x;it hath its own proper found, as in beftial, mixtion.

The letter x, hath its name from ics fhape, being compofed of twice u, it is called double n; but is in nocafe fo founded, bat we, as in wall ${ }_{2}$ well ${ }_{2}$ willa

The

Tht Englih acatenty.

The letter x, when it begins a word or Syllable, is founded thas, see, as in Xerxes; in other cafes thus, ex, or ecs.

The letter y hath by no means its found according to its ufual name wi, but when it beginsa word or Syllable, and fo becomes a Confoiant, it is founded yee; when it comes in the middle or end of a word, it is founded like i Vowel, as in my, thy.

The letter z is to be founded are, as in Zeal.

A Syllable is a literal or articulate Voice of one individnal found.

Syllables are of two forts, improper and proper.

An improper Syllyble is made of one or more Vowels without a Confonant; as a-my, e-vil, ex-neas, Oe-dipns.

A Proper Syllable is the comprehenfion of one or more Confonants, with one or more. Vowels, in one found or breath; as Geane-ra-tion, Momn-tain; and in our Exglifb Tongue doth fometimes confift of eight letters, as firengits.

When two Vowels are joyned together in one found or breath, they are called Dipthongs; of which there are two forts, Proper and Improper.

Of proper Dipthongs, there are thefe cight, ai, ei, ai, au, eu, ows, ee, and .oo.

The firt fix are fometimes written thus, $a y, c y, 0 y, a w, e w, o w n$.

The Englin academe.

Of improper Dipthongs there ave but thefe three, ea, oa; and ir.

The two Vowels which.make a Dipthong; are for the moft part to befounded together, as in Faith, reirber, Eunuchy but in thefe words, Lain y_{q} Mifitck work', Deity, Atbeiff, moity, doing, reenter, reiterate, and fach like; and in moft Proper Names in ths Bible they are to be founded feverally.

The Improper Dipthongs ea, and 0, ate founded together, except in thefe words, beatitude, Creatox, creation, real, theatre, and moft proper names of Women, Cities, and Countries; but the two Vowels in this Dipthong ei, are ufually parted, except in thefe two words, friend, grief, and when they come in the end of a word, as in mercie, cbaritie, and fach like.

An Eng/ish fyllable, though it may confift - of eight letters, yet doth it never begin with more than two Vowels before a Confonant, of three Confonants bef.re a Vowel or Dipthong.

The two Confonants which may begin an Englifo word or fyllable, are thefe thirty, $\mathrm{Bl}, \mathrm{br}, \mathrm{ch}, \mathrm{cl}, \mathrm{cr}, \mathrm{dr}, \mathrm{dw}, f, f r, g l, g n, g r, \mathrm{~km} r_{0}$
 $w h$, and $w r$.

And the three Confoniants that may bogin an Englifh word, are thefenine, $\mathrm{Sch}, \mathrm{fcr}$, for, skn, / $\mathrm{Pl}, \mathrm{Spr}, \mathrm{fr}, \mathrm{thr}, \mathrm{thw}$.

Intle founding of the Confonants, which

Cye Englifh academp.
are joyned together in the beginaing of word, there is no difficulty, but in thefe few, $\mathrm{cb}_{3}, \mathrm{gb}$, and th.

The leters cb , when they conse before a Vowel ina pute Englifb word, they are to be founded as in chance, cheap; and when they come after a Vowel, they are to be founded, as in ach, reach, rich. But in words derived from the Gretk and Hebrew, they are to be founded like k, as in character, thefe few only excepted, Racbel, Cberabin, Tychicm, Arch-Bijhop, Arch-Duke, Arckitect, Archcmemy, Arcb-pirat.

Ibe lettets gh , in the beginning of a word, are to be founded like g bard, as in ghof; ghefs, in the middle of a word, they are ei ther not founded at all, or butfoftly, as in: might, light, and in the end of a word they have the found of $f f$, as cough, tough.

Thefe letters th, in words of one fyllable; and in words of mare than one, ending in ther, thed, theth, thest; thing, they have the
\therefore found of ${ }_{2}$, in other words the found of t, ar the Greek Tbeta.

The letters ph, never begin a pure Engl.fh word, but fach only as are derived from the Greek and Helerew, as Pharifee, Pharez, Epion taph, and in thefe they are founded like f. The-Liquids, l, m, n, r, when another Confonant doth precede thenil in the beginning or middle of a word, do retain their awa found, bat in the end of a word, though B 4 the Vowel e, ought to be written, yet in the pronounciation, you mult fop at the two Confonants, and omit the Vowel; for Example, fable, acre, nucle, mult be pronounced as though they were written thas, $f a b 1$; acr, mencl.

CHHP. II.

Of Words.

AWord, is fuch a comprehenfion of letters and fyllables, as helpeth Man-kind to exprefs their minds to one another.

There are eight kinds of Words, or parts of Speect, Nown, Pronoun, Verb, Participle, Adreerb, Conjunction, Prepofition, Interjection.

A Nown, is the name of a Perfon or Thing; 2s, an Aushor, a Book, learned, guilded.

Of Nosns, come be Subfartives, and fome: be Adjolitives.

A Noms Subfantive, is a Word, that fig: nifieth fomething, and may have the fign (a) or (the) before it; as, a Mar, the Book.

A Alaux Adjectives is a Word, that canmat fignifie a, thing of it felf; as, good, bad.

I hare are two forts of Naws Subftantives:
A Noin Subfanize proper, and a Nous fubfantive common.

A Noun fubftantive proper, is'a Noun that is praper to the perfon or thing, that it betokencth; as, thenry, England.

The Enghin Geavemy.
A. Noun futftantive common is a Nohn. common to all things of the fame kind; as; a Mar, a Land, an Angel.

Toa Noun there doth belong two things, number and comparifon.

There be two Numbirs, the fingular and the plural; the Singular number fpeaketh but of One; as a Man, a Buok, a Sione. The Plural number fpeaketh of more than One, as, Men, Books, Stomes.

Nouns subftantive of the fingular number, are turned into the plaral, by adding unto them sor es, as web, webs, robe, robes, Cbiurch, Churches, bedge, bedges. Some Nouns of the fingular number ending in f, being piurals, do change fimo. v, as, beef, beeves, calf, calzes. And fome are made plunaly, by adding of on or ven; as, O_{x}, oxen, cbick, cbicken, brother, brotheren, or by contraction, brethren, child, cbildren; of Man is formed mennow, or men, boufe, bouferi, bofe, bofen; to which may be added, moufe, mice, loufe, lice, die, dice, Jaw, frine, cow, kine, peney, pence, goofe, geefe, root h. teeth, foot, feet; thefe two, Sbecp and Mild, are both fingular and plurab; as, one foepp, ten freep, one mile, ten mile or miles.

Other variation of Nouns we have none in the Englif Tongue; all ot hef diftinctions are made by thefe Articles and Prepofitions; \cdots, of, to, the, o, and $i n$, or from, \& c .

Nouns that fignifie the Male-kind, we call Leres; fuch as fignifie the Female, we rati
froes; and of fuch as fignifie neither, we fay its, as, Efan could not obtain his Fathers blefling, though be fought it, with tears: ylkabel was a wicked woman, for the dew the Lord's Prophets.

Comparifon belongeth only to NounsAdjeatives, whofe fignificatoin may be increafed, or diminifhed.
There be three degrees of Comparifon, the Pofitive, Comparative, and the Superlative.

The Pofuive degree fetteth down the quality of a thing absolutely without excefs, as borad, faft, fwifs.

The Comparitive degroe raireth the fignification of the Pojitive, in comparifon of forme other, as barder, fafter, fwifter.

The Superlative exceedeth his pofuive in the higheft degree, as bardeft, fofteft, frift off.

Adjostives are compared in the $\mathrm{Eng} / \mathrm{ijh}$ tongue, either by the figns more and moft, or by the terainations cr , and ef , as bards harder, or more band, hardeft, or moft hard.
Some Adjactives are compared irregularIt; as, Geod, becreor, beff; bad, worfe, warft, tiotle, lefs, beaf.

CHAP. III.

 of $\&$ Prosonn.APromeun is a part of Speect, much like to Noun; implying a Perforf, and not admitring the fign a or the, before it. There

Che Englifh extreme.
There are twelve Pronouns,.I, Than, He , who, which, that, the fame, my, thy, this, bis, whole.

Of Pronouns, Tome be primitives, and forme derivatives.

Pronoun primatives are of three forts, Pertonal, Relative, and Dexisanftrative.

There are three Pronoun porfonials; \boldsymbol{F}, $T b_{6} \mu$, and H_{e}.

Pronoun Relatives, are likewife three, whoa, which, and that.

Pronoun Demonstratives, are theft twa, shins the fame.

Pronoun Derivatives, are there four, $\overrightarrow{m y}_{2}$ thy, bis, whole. All which with their variations, are expreffed in the following Type.

Poffefives.

1. Perron. $\left\{\begin{array}{l}\text { Sag. }\left\{\begin{array}{l}\text { I, me, my, mine } \\ \text { Plur } \\ \text { We, us, our, oars }\end{array}\right.\end{array}\right.$
2. Person. $\left\{\begin{array}{l}\text { Sing. }\left\{\begin{array}{l}\text { thou, thee, thy; thine } \\ \text { Plur. } \\ \text { yo, you, your, yours. }\end{array}\right.\end{array}\right.$

Relatives $\left\{\begin{array}{l}\text { Toper. } \\ \text { E To who }\end{array}\right.$ whom, who f.

The English academe:
Own is a Noun adjective, and Calf; or felves, a Suipftanisue, but are fometimes joyned to, or compounded with the Pronowits; as, my Self, thy Golf; themfelver, bis own Self, their urn Selves.

This word where, with certain Prepoliticns following it; as, about, at, by, in, of, unto, with hath the lignification of which 'as, wherein, or in which. And the fe words, kere, there, and in like manner unfed for, this, that; as, herewith, tbexemith, for saith this, with that.

CHAP. IV_{H}
Of a Verb and Participle. .
$\mathrm{A}^{\text {Verb is a part of Speech, that joyneth }}$ the Signification of other words together.

There are three kinds of Verbs, Alive, Paflive, and Dexter.

A Verb Active, is a Verb that betokeneth doing, as, 1 love..

A Verb Pa/five, is a Verb which betokeneth suffering ins 1 am loved.

A Verb Neater; is a Verb whichibetokeneth being, as $I \mathrm{am}$.

Four things belong to a Verb, Mod, Tense, Number and Perform.

There are four Moods, the Indicative, the 1 m -

The Englih Gramerne
Ingexative, the Porential, and the Infinitizin
The Indicative either dieweth a realon *rue or talle, as / laue, or ashertha Queftion, as, doft thoul lowe.

There Imperative Mood, intreateth, permittreth, or commandeth, as lave beso or let bim loves

The Porential Mood, Iignifieth a power; duty, or cefire, and hath one of thefe Signs, "xay, cian, migbot poonld, hoxid, could or aughers as I may or can Iove.

The Infixitive Alood, notes no certain Number or Perfon, but followeth aniother K'erb, or an Abjectivs, and hath cempannly this Sign (to) before it, as I defore to lourrg warthy to be praifod.

The Tenfos or diftinetions of Time, are five, The Prefent Tenfe, the Preterimperfest Tenfer the Preterpenfect Terfs, the Proxere pluperfect Tenfa, and the Future Tenffi:

Thefe Tinfes in relpect of fignification, are thus diftinguifhed; in the Indicitite Mard, do is the fign of the Prefeat Tenfe, did af the preterimpecfect Tenfe, haue qE the Preterperfeot badiof the Preterphupex-- feot if ball and mift af the Furuce,

In the Potential Mood, by the figns alregdy given the Prefent Tenfe by thre fgns may or can, the Preterimperfectwould, boutd, could, of ought; and the Preterperfect; by annexing the fign ha ve to the former Signs, and the Future, by adding horeaftrer to the

$$
\because \text { I }
$$

D figns

14 The Englih actarme.

ligns of may or can, the Signs of the Prefent; as, 1 may or can hereafter, the Preterpluperfect in this Mood is wanting in the Englifh Tongue.

But in refpect of Termination, there are ho Moods but one, no Tenfes but two, namely, the Prefent, and Preterimperfoct Terfes.

And the Preterimperfeat Tenfe is formed from the Prefent, by adding thereto the termination (ell) and in fome few the termination (en) as of love is formed loved, of falts, fallen.

The Ferfons in every Tenfe are diftinguifhed by the perfonal Pronouns, I, Thow, and $H c_{c}$, in the Singular Number, and $W c_{c}$, $r ;$ They, in the Plural ; only the Second Perfon Singular inthe Prefentand Preterimperfert Tenfes is formed from the firft, by adding thereto the Termination eff, as of love, loveft, of loved, lov'edjf; and the Third Perfon Singular in the Prefent Tenfe is formed from the Firft, by adding thereto the Termination (eth) as of love is formed loverh. otier variations of Perfons or Tenfos there is none, butwhat is done by Signs, as was - Said before,

A Verb Aative then is thus formed in the Indicntive Mood.
Prefent Tenfe.

Sing. Love, loveft, loveth. Plkr. Love, Infinitize, To love.

Che Englifh \&cabemry;
 Preterimperfect Tenfe.

Is
Sing. Loved, lovedft, loyed. Plural. Loved.

This Verb Neuter, Am or $B \in$ is thus formed.

In the Prefent $\}$ Am, art, is, ? Plur. Are. Tenfe. $\}$ Be, beeft, be $\}$ Plur. Bee In the Pretorim- $\}$ Was, wafl, was, 4 Plkral perfett Tonfe. \} Were, wert, were, \} Were. Infinitive. To be.

A Verb Paffive, is the fame throughout all Moods and Tenfes, with a Verb Nexter, the - Preserimperfeat Tenfe of the Active Voice, being added thereunto;- Thus the Paffive Voice of this Verb Active, I love, is formed, by adding loved to all the Tenfes and Perfons of this Verb Neuter, Iam.

For Example.
The Pxefont Tenfe of the Indicative ZAeod
is thus formed,
I am loved, He is loved. $\left\{\begin{array}{l}\text { We are loved, } \\ \text { They }\end{array}\right.$

A Participle is a part of Speech, derived of a Verb, from which it hath Signification, of Time prefent, paft, or to come.

$$
\underset{\text { D }}{\text { D }}
$$

There are two Parriciptes; one of the tieive, and another of the Pafive Voice.

The Participle of the Active Voice is derived from its Verb, by adding the Tcrmination (ing) to the Prefent Torfe; as of tove, loving.

The Participle of the Paffive Voice is for tie moft part, the fame with the Preterimperfeot Tenfe of the Active; as the Particip'e of the Paflive Voice in this Verb looe is toved.'.

From this General Rule many Verbs are Exrepted, for of:

Make	ded	
		hake, frook, fhak
rea	促	
fmell	finl	,
	foug	rife, rofe, pifen
efeech		
	thoug	trive, ftrove, f (t
	wrou	fing, fang, fung
	bo	know, knew, known
grinde	groun	throw,threw,thrown
A	tro	lgo, went, gone,

Of thefo, fee more in my School Paftime.

CHAP.

and Interjections.

AN Adverb is a Word joyned to a Verb or Noun, to declare their Signification. Some of Time, as when, now, then, to day. Some of Number, as, heid oft, once, twoice. Some of Order, as, irif, zext, afterward.
Some of Place, as where, here, there.
Some of Affirming, as, vea, perbaps.
Some of Denying, $25, n o, n o r$.
Some of Shewing, as, 70 , behold. Some of Similitude, as, $\sqrt{0}$, hord much, more. A Conjantion is a part of Speech, which joyneth Words ahd Sentences tagether, of which thefe are fome, And, atfo, likewife, nor, neitber, whetber, or, cither, but, fer, \&C.

A Prepofition, is a Word commonty fet before other parts of Speech, either in appofition, as before tbe Mafter, or in compofition, as overwife.
An Interjection is a Word, expreffing forme fuddain paffion of the Mind ${ }_{2}$ oh alafs, O Atrange, bo, bark. firrah.

CHAP. VI.

Of Dividing of Words inzo Sylables,

FOr the dividing of Words into Syllables there are four Rules.

1. Two Vowels which make no Dipthong, muft be divided; as, $i e, i u$, ua; as in qui-ct, tri-umph, mutu-al.
2. Thofe Confonants which are doubled in the middle of a Word, mult be divided; as in Abba, actord, adder.

Except they be needlelly doubled, as in words of the Plural Number; as in crabbs, rodds.

Except fuch words in which they are doubled for diftinction fake $;$ as in the words, Ann, Cann, Inn.
3. Rule. When a Confonant cometh between two Vowels, it is to be joyned to the latter; as in a-vail, a-ni-mate.

But to this Rule thereare Four Exceptions
I. Except Words ending in cs, as in Nouns, of the Plural Number, and Verbs of the third fer fon Singular, in which this particte is for the moft part fwallowed up, in the former Syllable; but in all proper Names, except Charles and fames, it makes a diftinct Syllable.
2. Except Words that are compounded of fuch Simple Words, as are fignificant a-

The Englif atabme

part, in which each Simple Word muft retain its own letters; as, Tradef-man, fafegnard, bence-fartb.
3. Except Derivative Words, whofeaddition to the Primitive, doth fignifie nothing of it Felf, in which the Primitive mult be founded by it felf, and the addition by it felf; as, hope-lefs, lov-ing, joyn-ing, and fuch Jike.
4. Except fuch Words in which \boldsymbol{x} cometh between two Vowels, in which it muft be joyned to the firft Vowel; as, ox-en, exercife.
5. Rule. Any two or three Confonants, which may be joynd together in the beginning of a word, are not to be feperated in the middle; as in a-gree, beffow, en-tbrall; deftruction;'; but in compounded words,each fimple word mult retain its own Letters.

When you are to-write any hard long word, mark how many founds or Syllables it hath, as if you were to write di daainfullnefs, wniverfalitie, or the like, before you write it, fay thus to your felf; dif-dain-full-nefs, cu-ni-ver- Ca-li-tic, and you fall hardty miss in the writing thereof.

CHAP. VII.

Of Sentencer, fuch Difinctions, or Points as are to be ufcd in Writing, and abforved in Reading.

A Sentence, is a number of words, joyned together in perfect Senfe.
The Stops or Points to be oblerved in Sentences, are of two forts, Primary, and Sesun. dary.

The Primary Points are thefe Eight.

1. A Comma, made with a little Itroke thus (,)
2. A Colon, made with two points thus (:)
3. A Semi-calon, made with a point, and a little iroke under it thus (;)
(.). A-Period, made with a lingle point thus
4. An Eresefis or Intarrogation, made in this manner (?)
5. An Esphonefis, or note of Admixation, aofe note is a perpendicular right line, with a point under it thus (!)
6. A Parenthefis, is a note, like two half Moons, inclofing a fentence, which may be ufed or omitted, and yet the fenfe remain intire, thus ()

Tbe Englih grademe.

8. A Parathefs, is a note, which doth include a word which is oppofed to another word, and is made with two Semiguadrats, thus []

The Secondary Points are thefefix.

1. An Apoffrophe, which is a note, fet on the top or fide of a Letter, whereby two Syliables are contracted into one, and is made like a Comma, thus (') as $i t^{\prime}$'s for it is.
2. An Exlipfos, which is a note cutting off one or more words in the beginning or ending of a Verfe or Sentence, cited in our Writing, and is made with 2 long ftroke thus -as

Prixces atre not wife,

Who geep themfelves, and truf their fervants
(Eycs.
3. A Dierefos, which is a note for the parting of two Vowels, which otheratfe might feem tomakea Dipthory, and is made with two pricks over the two Vowels, thus, ("D) as in Lais.
4. An Hypher, which is a note of rontinuation, made thus (-) and is to be ufed when one part of a word conclud: eth the former line, and the echer part beginneth the next; or elfe, when two words are, by way of Elegancy, as it were E

22 Ene Englifh outmot
joyned into one; as frlf-lowe, for the love of ones lelf.
5. An Accent which is a fmall ftroak drawn flopewife towards the left-hand,thus, (') and is to be fet over that Syllable.in a word, which is to be pronounced long.
6. A Circmimflex, which is the joyning together of wo oblique ftreaks into one figure, orte of them being made towards the tight Itand, and the other towards the left, and is to be fet over a Vowel, thus, (2) which is. to be pronounced long, as in bite, wîle, fîte, not in bit, win, fitll.

The Accent in words of many fyllables is comnonly jaced on the thitd Vowel from The laft; asin tolerátion, induftry.

But words ending in (ary) have the accent on the firt fyllable, as témporary; words that have nany Conionants in the laft fyllable: lave one, have their accent on that fyllable, as in etcruad, words ending in ire and ure, Dive their occent in that fyllable; as iutre.
A Noun lathits accent in tre ort, aVerb withe lat TyMable ; asabjent, to ablent.

* So Fitmane, when it comes before a SulAtariof as himane-learning; but in the laft Tullab e when it comes after a subftantive, as Cbris had ing natures, the one divine, the SHher fium inie.

THE ENGLISH

Of ARITHMETICK.

CHAP. I.

Df fingle Aritbmatick in whole Awnders:

\because Aribmerick is the orte offacconspling Wiy Numbers; itt iseither poffire of megative.
2. Dofitiou dritthmetion, is that whieh is wrought be certain atid furfalible Numberis
 or comparativie.
: 3. Sivelt, which is wrought fy Nambers, conffdered alone, withoit retation to orie another, and this cither in whole Numbisers, prin Fraftions:
4. The parts of fingle Aritbmetick, are tyo, Notation and Numeration. Notation hath two parts; the firlt theweth the value of the Notes, by which all numpers are expreffed; the fecond heweth how to read the Numbers which are expreffed by thofe notes.
6. The Notes or Characters, by which all Numbers are ufually exprefled are thefe, 1. one, 2. two 3. threc', 4 fourb, 5.five, σ. fix, 7. feven, 8. cight, 9. nine; o. nothing.

7: Thefe notes are either fignificant Figures, or a Cypher.
8. The fignificant Figures, are the firft nine, viz. $1,2,3,4,5,6,7,8,9$. The firf: whereot is more particularly termed an μ. nite or unitie, the reft are faid to be compofed of unities ; fo 2 , is compored of two unites 3 , of three unites, \&c.
9. The Cypher, though it fgnifie nothing of it felf, yet being fet before or after any of the reft, increafeth or decreafeth their vaIue, as fhall be farther thewed hereafter.
10. The fecond part of Notation, is the reading of the Number expreffed by thefe ngtes; and this is done by diftinguilhing the Number given into Degrees and Periods.
$1 i$. The degrees are three, the firft is that frit place of a number towards the righthand, and is the place of Unity.. The fecond is the fecond Figure towards the right hand, and this is the place of Tens. The third is the
third Figure towards the right hand, and is the place of Hundreds; fo this Charater o, doth fignifie Nine ; thefe Notes 27, Trenty feven; and thefe 235 , Two hundred thirty: five.
12. APeriod, is when a number confifting of, more notes than three, hath each three notes thereof (beginning at the right hand) diftinguifhed by Points dr Commas: The feveral parts of the Numbers fo diftinguifhed, are called Periods; fo the Number 38456249 , being diftinguifhed into Periods, will fand thas, 38.156 .249 . of which the firlt Period is read thus, Two hundred forty nine; the firt Figure in the fecond Period is the place of Thourands, the fecond Tens of Thoufands, and the third Hundreds of Thoufands. In the third Pariod, the Figure is in the place of Millions, the fecond Tens of Millions, and fo this Number is thus to be read. Thirty Eight Millions, One Hundred Fifty Six Thoufand, Two Hundred Forty Nine.
13. Numeration, is that which by certain known Numbers propounded, doth difcover another Number unknown.
14. Numeration hath four Species; Additian, Subtradion, Multiplication, and Divifion.
15. Addition, is that by which divers nutrbers are added together, to the end that the Sum or Total may be difcovered. For which purpofe, having placed the numbers as in the following Example, begin with thofe in the

The Englifh Mrtibenu.
undey place firt, then with thefe in the place of Teus, then of Hundreds, and fo forward, recording as the Nambers givien do confift -f places, carrying the Tens, if there be any, to the place of the next greater rank, as bere you fee.

472961
341608
74325
6739
---:
4567890
6549238
895633
---:

16. Suberaction isthat, by which one numb ber is taken out of another, fo that the Refidue or remainder may be known. To perform this, you muft rank your Numbers;and begin as in Addition; and in cafe any of the Gigures of the Number to be fubtracted hall be greater than that, from whence the Subtraction is to be made, you malt borrow one from the next place above it; as in the Exn amples following.
895633

341695 | 6549238 |
| ---: |

17. Multiplication, is that by which we Moltiply two nambers, the one by the other, to the end, that theirProduct maybe difcovered.
18. Mistiplication hath three Parts, the Multiplicand, the Multiplicator, and the Pran duct.
19. Multiplea
20. Multriplionion, is fingle or compand.
21. Singie Mutriplication, is when the Nato riplicand, and Multiplicator, do each of them conift of one only figure: as if a werogiven to be Mudtiplied by 6,9 is tho Maltipictand 6 is the Multiplicator, and 54 is the Product
22. Compound Amultiplicatiom, is when the Multiplicator and Deiltipticandsto cither, of both confir of more Figures than one. :
23. When the Product of amy of the pari ticular Figures foall exceed ten, place the Exs eefs under the Lise, and for every tea that it fo exceeds, keep in mind one to be added to the next rank : Example; 76147% being to be Malciplied by y, the Produat
 ven to be Multiplied by 4 jithe 47 work will ftand as in the Margin, where the Prodect ty $7: 277438$ is 277438, and the Product 158536 thereof by 4, is 198836 , and the Sum of thefe two Products $\quad 1862798$ is $\mathbf{1 8 6 2 7 9 8}$.
24. Divifion is that by which we difcover how often one Number is contrised in another, that we may find out the Qnotient.
25. Divijaon hath three Parts, the Dividend, the Divifor, and the Rnotient; thus, if 35 were givento beDivided by 5,35 is the Dividend, s the Divifor, ant 7 will be found to be the Quoticnt. end of your Dividend, that on the left hand ferving for your. Divifor, and that on the right for the Quatient ; then fee how oft your Divifor is contained in the firft Figure or Figures of your Dividend, and put the anfwer in the Quosient, then Multiply your Divifor by the Figure in the Quotient, and the Product fubtract from your Dividend, then draw downi the next Figure of your Dividend, and ask how oft your Divifor may be found in the remainer fo increafed, \& the answer putt in the Quotient, and proved as before, till there be Do Figures left in your Dividend, and fo oft as the Queltion is repeated, fo many places moft be in the oprotimat, as is manifett by the Gallowing Example.

Let

Let 1862798 , be given to be divided by 47 , I ask how often 47 may be had in 186? the Anfwer is 3 , which I place in the Quotient, then L.Mulciply 47 by 3 , the Productis 141, which being Subtracted from 186, the Remainer is 45 , to which draw down 2 the next Figure in the Dividend, and then it will be $4 \xi 2$, now then I ask how often 47 may be had in 452 ? the which by the Table made by the continual Addition of 47 anto it felf, is 9 times, therefore I place 9 in the Quotient, and the Product of 47 is 423 , which being Subtracted from 452 , the Remainer is 29, to which I draw 7 the next Figure, and, then procéed as before, and fo at laft I find the Qugtient to be 39634.
26. Mditiplication and Divifiom, prove one another, for if you Multiply the Quotiont by the Divifor, the Product will be equal to the Dividend: fo 39634 , being Multiplied by 47, the Product is 1862798 , and this Prom duct being Divided by 47, the Quotient is 39634 .

CHAP. II.

Of Single Arixhmetick in Pracitions.

SIngle Aritbmetick in whole Nambers, hath been fhewed in the laft Chapter; Single Arit beretick in Fractions now followeth.
2. A. Fraction is a part of an Integer.
3. Singto Arithmet ickin Fractions, doth also confill of two Parts, Avotzsion, and Nbmeratiom.

4 Notation of Fraations, is that which theweth how the Fraction part of any Integer may be expreffed in numbers; that is, an Integer on one whode thing being Divit ded into any Number of equal parts, Noxation fieweth how thefe parts may be expref: fed; ; as if a Yard were Divided into font parts, and it were defired, that I flooid fee down three of thefe parts; the ufival mannes is thas, drave line, $\&$ fet the Number of parts into which the Integer is fuppofed to be divided, under the line, and the Number of parts you would exprefs fet above the line; thus to exprefs three of four parts, I write 4 under a line, and 3 above it, thus, $\frac{1}{4}$; and fo may you do with any other number propounded: Where note, that the number above the line is called the Numerator, and the number under the line the Denominator.
5. A Fraltion is either Proper or Improper. 6. A

- 6. A Propor Fraction is that whofe Numerator is jers than the Denominator, fach as are thefe $\frac{1}{4} \mathrm{r}^{\frac{4}{2}} \mathrm{r}^{2} \frac{2}{8}$.

7. A: Proper Practian is either fingle or compound.
8. A Single Fraction is that which confifts of one Numerater and one Denominator, - fuch as are $\frac{1}{4} \boldsymbol{₹}^{\frac{6}{2}} \mathrm{~T}^{\frac{2}{0}} \frac{2}{6}$.
9. A Compouesd Fration (otherwife called a Fraction of a Exaction) is that which hath more Numerators and more Denominators than one; which kind of Fractions are difooverable by this word (of) which is interpo: Sed between their parts $;$ as, $\frac{2}{3}$ of $\frac{1}{4}$ is a-Fraction of a Fraction, or a Compound Fraction, and exprefleth two thirds of three fourths. of ain Integer
10. The things exprefied by broken numbers or Fractions, are principally the Parts or fractions of Money, Weight, Meafure, Time, and things actounted by the Dozen.
11. The leaft part or Fraction of Money ured in England is a Farthing ; and four Farthings makesia Peny; twelve Pence, a Shilling ; and twenty Shilliags, one Pound Sterling.
12. The leaft Fraction of weight ufed in England, is a Grain; that is, the weight of a Grain of Wheat,well dryed and gather'd out of the middle of the Ear, whereof 32 make a peny weight, and twenty peny weight an ounce Troy, and twelve ounces a Pound ; but
a peny weight being thus afcertained, it is now fubdivided into twenty four Grains. 13. The weights ufed by Apotbecaries are derived from a Pound Troy, which is fubdivided in this manner.
> th A Pound Tray, is 12 Ounces.
> 3 An Ounce, is - 8 Drams.
> 3 A Dram, is - 3 Scruples.
> \ni A Scruple, is 20 Grains.
13. Befides Troy weight, there is another kind of weight ufed in England, called Averdupois weight, a pound whereaf is equal to fourteen Ounces, twelve peny weight Troy, the which is fubdivided into 16 Ounces, each Ounce into 16 Drams, and each Dram into 4 Quarters. Of this: weight 112 makes 2 Hundred.
14. The Meafures ufed in England are of Capacity or Length.
15. The Meafures of Capacity are liquid ardry; Liquid Meafures are according to this Table.,
One pound of Wheat Troy weight - $\}$

Two Pints
Two Quarts
Two Pottles
Eight Gallons
Nine Gallons
Two Firkins
Two Kilderkins
Forty two Gallons
Sixty threeGallons
Two Hogheads Two Pipes

One Pint:
One Qaart.
One Pottle.
One Gallon.
One Firkin of Ale: :
One Firkinof Beer.
One Kilderkin.
One Barrel.
One Tearce of wise
One Hoghead.
One Pipe or Bat
One Tun.
17. Dry Meafures are thofe in which all kind of dry fubftances are Neted; as Grain, Sea-coal, Salt, and the like; their Table is this that followeth.

34 The Englih acavemp.

18. Long Meafures are expreffed in the Table following.

ThreeBarley-corns in length
Twelve inches Three Foot Threefoot 9 Inches Six Foot Five yards \& 2 half Forty Poles Eight Furlongs

One Inch.
One Foot.
One Yard. One Ell.
One Fathom:
One pole orpearch.
One furlong.
One Englifh Mile.

Note that a Yard, as allo an Ell is ufually fubdivided into four quarters, and each quarter into four Nails.
19. A Table of Time is this that followeth:
$\left.\begin{array}{l}\text { Sixty Minutes. } \\ \text { Twenty four hours } \\ \text { Seven Days } \\ \text { Four Weeks }\end{array}\right\} \approx \begin{aligned} & \text { Que Hour: } \\ & \text { One Day natural. }\end{aligned}$
Fifty two. Weeks, one Day, and fix hours make one Year.

And thefe Frasions of Money, Weight, Meafure; ex. are ufually written under:thein feveral Denominations, inftead of having. their Denominators written mender thein thus;

lib. fhill: pence. farth.			
23.	19.	08.	3.

And as their Notation is two-fold, $\mathrm{f} \delta$ is their Numeration alfo, Firft, then I will. Thew you the Numeration of parts when written, as Integers, and then as vulgar fractions.
20. Numeration of parts when written, as Integers; is Accidental or Effential.
21. Alcridertal Numeration, otherwife called Reduction, is either defcending or afeending.
22. Reduction Defcending, is when a number of greater Denomination being given, it is required, to find how many of a leffer denomination, are equal in value to that given Number of the greater. :And this is performed by Multiplication; as if it were required to Reduce 329 Shillings into:Pence, if you Multiply 329 by 20 , the number of hillings in a pound, the Product will be 6580 frillings; and 6580 hlillings being awhtiplied by 12 , the number of pence in a hilling; the Product will be 78960 perce.
23. Rednction Afeciding, is when a number of a leffer Denomination being given, it is required, to find how many of a greater Denomination, are equal to that given num; ber of the leflet: Andithis is done by Divid fon ; asifit were requitedte find how má ny. Qounds there wete in 78960 pence; if 7896 a pence be divided by 12 , the number of pence in a hilling, the Quotient will be 6580 Shillings, and if 6580 hillings be divi-

36
The Eggifh Elcatemp.
ded: by $2 a$, the number of Billings in a penad, the Quatient will be3 2g Pounds, ind fo for any other.
24. Effential Numeration, doth confift of four Species, Addition, Subtraction, Murriplication, and Diezframs.
25. In Addition of Numbers of feveral Denaminations, you maft begin with the lesff firt, and when the firm of any of the Denominations amounts to an Integer, add it to the next Denomination that is greater.

Exampla.

$23: 84: 10: 1$	$15: 18: 10$
$16: 15: 09: 2$	$16: 17: 09$
$27: 09: 11: 1$	$17: 16: 08$
$44: 19: 07: 3$	$18: 15: 07$
$113: 90: 02: 3$	$69: 08: 10$

26. In Subtration of Numbers of, fereral Denominations, when any of the parts of the greater Number are lefs than the parts of the leffer Number fubferibed, Deduet the parts of the leffer Number from the parts of the greater, iacreafed with an Integer, nf the next fuperiour Denomination, and keeping one in mind, add to the next place of the pumber given to be Subtraffad.
. Cby Euglifh minamie.
Examifo.
44:13:07:5
$25: 19: 11: 3$
$18: 13: 07: 2$
$42: 59: 15$
$26: 00: 08$
27. In. Ahutiplication of nambers of fiveral Denominations; you mult firft seduot the numbers iven totheir leaft: Denominations andthen Mutipijy themasi hathiboen hewod if whole nainbers, the Froduet dividodisy the fiparce of ahe parts of adinateger, reduced teo the leat Denomisation, fhall in the Qriotientigive the Prodiact requiced.

Cis drivis oterample,
Let the Prodact of 17 l. 19 s. 6 d. by 5l. 13 s. 6 d. be required. 17 L. 19 f. $6 d$. being reduced to make 4314 Pence. And Thbigs sid diredtaced lo noake :1362 Pence.
\qquad
Thb: Product. 5875668
H

The number of pencein a pound are 240 , abd the fquare thereof is 57600 , by which diwiding 5875668° the Quotient; Joz.lib.
 Qpotions fought.
128: IncDivicion of numbers of feveral Denominations, frlt reduce yourDivifor to its number of parts in the lealt Dehomination, then Moltiply your Dividend; by the fquate of the parts inan lneeger reduced to the leat Demominations, \& if there; be any parts anmexed, to the Integers of the Dividend, they muft be redured to the higheit Fraction, that the fquare of, the parts in an lnteger reduced to its deaft denomination will bear, and added to the former Product, the whble being divided:byjy your divifor reduced, will give you the Quotient fought.

Example:

 divided by $5: 13: 6$. Firft I reduce the divifor given to its namber of parts in the leaft denomination, and it makes 1362 pence, then I Muttiply 102 the Integral part of my dividend, by $\$ 7600$, the fquare of pence in 2 pound, the Product is 58752, and the FraCtion of my dividend $00: 01: 3 \frac{4608}{5} \frac{1}{6}$ being reduced, is $57 \frac{46}{60} \frac{1}{\circ}$, which being added to the former Product 5855 , the fum is 5875668 , for the diridend, which being divided by

1362, the Quotient is 4314 Pence, that is 17 lib. 19 finill. 6 pence.
29. Numeration of Fractions, when written with their Numerators and Dehominators, is alfo Accidental and ETrential.
30. Accidental Nameration, otherwife called Reduction ${ }_{2}$ is three-fold.

1. To Reduce one Fraction which is not already in its Ieaft terms, to a leffer denomination.

To do this, divide the numerator and detominator by their gréterte common meafure, the two Quotientsinall be one of then, a new numerator, and the other a new denominator of a Fraction equal to the FraCtion given, and in its leaft terms.:

Example iti being given'to be Redaced? the greatee tommon meafare is 13, by which dividing 91 , the Quotient is 7 ; for a new numerator, and dividing 117 by .13, the Quotient is 9 for a new denominator, and fo. - $\boldsymbol{i}_{1}^{1} \frac{1}{7}$ is reduced io $\frac{3}{9}$.

The gidenteft commoh meafure between two numbers is found thus; divide the grear ter number by the lefs, and your divifor by the Remainer, if there be any, your laft diviforis the conmon meafure fought, as in the following Example.
91)

2. To Roducemany Fractions of divers Denominations into ore Denomination.
To do this, Multiply each Numerator by all the Denominators except its own, the Products hall be the new Numerators, then Multiply all the Denominators together,
 minator fought.

Example. $\frac{\frac{2}{3}}{\frac{4}{3}} \frac{6}{7}$ will be reduced to $\frac{1}{2} \frac{2}{5}$.

3. To Reduce any Fraction from ne Denomination, to any other Denomination defied. And to do this Multiply the Numerator given, by the Denominator required, \& divide the Product by the Denonsina: tor given, the Quotient gall be the Numen tor defined.

Example, let it be defired to Reduce $\frac{1}{2} \frac{1}{0}$ to a Fraction, whore Denominator Shall be 100, firft Multiply 17 by 100 ,the Product is 1700 which being divided by 20 , the Quotient is 85,

Ist for the new Nunacrutur defiredt?
51. Efentiol Nmmeniciont of Frafionso hath four Species, ctadiviex, subldultion: Muntiplicationranct Diviforn.
32. In Addition of Frations, the Fractio an givenmoft be-fiof Reduced tione Ded menipatiop, and thet add the; Numeriatorn together, fo have you the Sam of the FraEtiong 50.2 and $\frac{1}{9}$ make $\frac{2}{9}$.
33. Subtrationof. Iractions ia thoti, ife Ote Dretomintion; deduct shelers fome the gnimber; theiredferenceis the tembaitet, To atraser froman $\frac{2}{}$ reft $\frac{8}{9}$.
34. Multiplication of Fractions, is thes, Multiply att the Numeratorsitogether, fa is. their Pradert a new Numeiasqu, thens Mata tiply all the Denominatons togethery ina theit Brodact isamevo Denomiuntor. .

Itims. if $\mathrm{T}^{\frac{1}{2}}$ ind $\frac{2}{8}$ wtre to be Milliphied; the Prodret will be $\frac{3}{9} f$.
35. Diviffen of Frations is thens, Maltio ply the Numerator of the dividend by the denominator of the divifor, the Prodract fhall be anew Numerator; alfo Multipisy the numerator of the divifor, by the denominator of the dividend, fo thall the Produte be a new demomipator, and this new Fraction is. the quotient fought ; fo if $\frac{4}{9}$ were to be di-

36. Whan the denominator of a Fraction is an Unite with Coppters, the Eraction is. more particulacty called a Doazzel; and.
fuch Fraitions may:be exprented without their deriominatory as well as with them, thas, tis may be written thus; s.
37. When the Numerator doth not confir of formany places, as the derioninator hath Cyphers, fill up the void places of the Nimerator with Cypher', fo, Tits rof are written thus, .05 , and 025 .
38. Numeration of Decimal-Fyaitzons, is Iikewife two-fold, Accidental and Effential. 39. Accidental Numeratim, neherwaiso alled Redaction, is performed, by thethird way of Reduction; fhewed in the Twesty feventhi Rule of this chapter.
40. Effential Numeration, hath is it the four ofual Species, Addition, Subitraltions atrulriplicintion, and Divifopo.
41. Addition of Decimals is the Fame. with Addition of whole Numbers, if a point or line be fet between the Integers and the Parts, as in the following Examples.

42. Subduction of Decimals doth differ from Subduction in whole Numbers, but by a point to diftinguif the whole number from the broken; as in the Example fols. lowing.
.fibe inughingabutiv.

$$
\begin{aligned}
& \begin{array}{c}
2507496 \\
17.89637 \\
7.17859
\end{array} \quad \frac{178.83589}{18.17847}
\end{aligned}
$$

430 Mantiplication of Dacimal Fractions is the fame with Multyplication in whole numbers, but when the work is finifhed, to diftinguif the Integers from the Decimals, do thasis fo many places of parts as are in both the pamkersigiven, being feparated by a point, the relt of the figures towards the Left hand are Integers, and thofe towards the right are-Decimal parts ; ass in thefe Examples.

A4. Divifion of Decimal Fractiogs ris the Pame with Divifion whole munibers, but - when the Work-is finifined, toidiotinguif the iftadionat part from the integers; obforve this general Rule.

The
-The firf figure in your quotient will be always of the fame degree or place with that Figure or Cypher in your dividend, which flandeth over the Tinites place in your divifor.

For Example: 78925 , being gtren to be - divided by 32 , the quotient will be $24^{666,8}$ becaufe the place of Unites in the divitor, doth-ftand under the piace of feconds in the dividend; therefore the firft figure in the qquetient, will bein the pláceoffeconds, tind the firf muft be fipppied with- © Oypher, and then the gatientwill be-osos 466.

CHAP. III.

-Of Comparative Arithenctick.

THus much hath been faid concerning Singbe Arithmetick, Cerpmoutive follows, which iswrought by Numberspas they are confidered to have relation to one another.
2. This Relation confifts either in quanstifyeoringiqualty :til. Relationdionquatity is is ino neferenge theituti Numbers thitmedres: have antwo - mother ;asivbena thecomparifonisimadeliotwcen 8 and 2 , or 2 and 8 .i.7end 3 3or 3 and 7 . And

And bere the Numbers propbunded are always two, whereof the firft is called the: Antecedent, the other the Confequetit. 1.4. Relation in quantity, confofts either in the difference, or in the rate or reakin. found between the Nambers propounded; the ofne is found by subtracting the lefs from the greater; 106 is the difference betweerr 8 and 2 ; but the other, to wit, the rate or peafon, is found by dividing the greater by the Jels, andtuus the rate between 8 and 2 is four-fold, becaufe 2 is found four times in 8; Or the rate may be alfo found by dividing the lefs by the greater; or fetting the Numbers given in manner of a Fraction, and thus the rate between 2 and 8 is 4 alfo, or $\frac{2}{8}$ that is $\frac{3}{4}$.
5. This zate or reafon of Numbers is ei- . ther equal or unequal ; equal reafon, is the relation that equal Numbers have one to. another, as 5 to 5 g 6 to 6 . Unequal Rea: fon is the relation that Unequal Numbers have one to another, and this is cither of the greater to the lefs, or of the lefs unco: the greater.
. In the one the greater Number is the Antecedent, and the lefs the Confequent ; and in'the other the lefer Number is the Ante-: cedent, and the greater is the Confequent6. Relation in quality, (otherwife called Proportion) is the reference or refpect that the reafoss of Numbers have one to- ano-
ther, and therefore the Numbere mindelbemare than two, or elfe three cannot: be thes. comparing of reafons in the Phoral Numbere.
74. Proporijn istwo-fold, drithmatisaland: Geonetriciek.:
8. Arithometical Proporsion, is wham sumas bers differ according to equal reafor ; that is, faxe equal differences; $2 s, 2,4 ; \sigma, 8,10$, or $3,6,9,12$, in the firft rank the common dif: fereace is 2 , and in the focosth 30 .
 timed; or interrupteds
10. Arithmetical Proportion continued, is. when divers nombers are linked together by a comtinued Prafrefiour of equal dificus esces and in fich : 4 Pragryfion, the fan of the firft and laft Terms being Multiplind by: luadf the nimber of the Terms, the Product: *ill be the fum of all the Terms 525 in thisw Progrefiam, 1, 2, 3, $4,5,6,7,8,9,10,11,12$, theftin of the firft and laft is $13 y$. which being Multiplied by 6 , halfuthe numberiof the: Terms the Product is 78 , the fum of alktien. terims in that Pragreffion,
11. Three Numbers being given in Ant mittivetical Proparitor, the mean manaber being dqubled is equat to the finm of the Er-i Encans ofo 3, 4. 9 , being given, the doublei of 6. the ntean namber is equal to the funcof 3.and ig, the:cwo Extreans.
1.1. Aristonectical Proportion Interrupted, is when the Enagreffore is difcominued y

The Eaglif extibnig
is in thefinumbers, $2,4,8$. 1d.
13. In: Arithometital Propertion continued; or difcontinged, the fum of the Means is e. qual to the fom of the Extreans, as in $3 ; 6$, 9,12 b being given, the fam of 6 and 9 is e. quat to the fur of 3 and $2, j$ or $3,6,12,15 ;$ being given, the frin of 6 and 12 , is C_{-}. qual to the fan of 3 and 15.
14. Gcantrical Proporition is, when divers numbers differ by the like feafont ass: $1,2,45.8$, 66 , withet difer one from ahow ther by double reafon ; for as 1 is the half of $2, f 02$ is the half of 4,4 of 8,8 of 86

Is. Gesmetrical Propertion is either cons. timed or interrapted, Geometrical Proportion concinted; in when divers numbers are lins led together, by a continued Progreffion of the likereafon; $a s, 1,2,4,8,16$, or 3,6 , 12, 24, 48.
16. In Numbers Geometrically proportional, If you Maltiply the fart Term by the common rate by which they differ; and from the Product-deduct the firf Terin, and divide the Remainer by the former rate Iefs by an Unite, the Quotient frall be the fum of all the progrefions; Son 2 ; $\sigma, 18,54,162$ $4{ }^{86}, 45^{8}$, being prapqunded the laft term 1460, peing maltuplied by 3 the sate, the. Product is 4374 out of which deducting 2 the firf Term; the Remainer is 4372 , which being divided by 2 the rate lels one, the quotient 2186 is the fum of that Progreflion. 17. Three
17. Three Proportionals bcing given; the fquare of the Mean is equal to the Product of the Extreams; fo $4,8,16$, being given, the fquare of 8 is equal to four times 36.
18. Geometrical Praportion intervupted, is when the Progreflion of like reafon is dif continued ; as, 2,4, 16, 322, where the Term between 4 and 16 is wanting, and therefore the rate between 4 and 16 is not the fame that is between and 4 , or 16 and 32.
19. Four Proportional Numbers whatfoever being given, the Product of the two Means is equal to the Product of the two Extreams; fo 2,4,16, 32, being propounded, 4 times 16 is equal.to 2 times 32 , which is 64.

CHAP, IV.

Of the Rwte of Proportion, or Rile. of Three:

FRom the laft Rule of the former Chapter arifeth that precious Gem in Arithmetiek, the Rule of three, which for its excellency, defirves the name that is given to it $_{2}$ Tbe Golden Rule.
2. The Colder Rute, is that by which cep ratin murnbers being given; another number Geometrically proportionial to them may be found out.
3. The Golden Rule is either fingle or compound.
4. The fingle Rule, is when three terms or numbers are propounded, and a fourt in proportion to them is defired.
5. The Terms of the Rule of Three confift of two Denominations; two of the Terms propounded have one Denomiastion, the third propounded and gourth requie. red, trate mother.

6: Of thote tpa mppers given which are of one Denomination, that which moves the Queftion muft poffers the third place, the other number of the fame Denomination, muft be put in the firft place, and confeguently, the other knawn Term phigh is of the fame Denomination with the fourth required, mult pofefs the iccond place.
7. The three Terms propounded being thus placed, confider whether your third doth require more or lefs; if it requires more, Maltiply the middle number by the greater bf the two Extreans, and divide the Product by the iefer, the Quotient is the fourth Number or Term defred.

But if the third Term in the Queftion require lefs; Multiply the middle Term by the leffer of the two Extreams, and the Pro- Thall be the fourth Term defired; An Example in each Gafe will fufficiently explain the Rute.

If 7 Pound of Sugar. coft 2 s. 7 d. What thall 28 Pound of Sugar colt ? The Terms mult ftand thus,

Where it is plain, that 28 , pound of Sugar muft needs colt more than 7 therefore IMultiply 2 s. 7 d . or 31 pence, by $28{ }^{\circ}$ the Product 888 being Divided by 7 , and the Quotient is 2 A d. or 10 s. 4 d .
2. Example; If 7 Men will digg a Garden in 3 t Dayes, In how many Dayes will 28 Men digg the fame Garden? Here the Terms moft fiand thus,
Men. Dayes. Mcen.
7
36

Add by the ftate of the Qneftion it plain? Iy appears that the third Term requireth le's: therefore I Multiply 31, the middle Term, by 7 , the leffer Extream, and the Product 217 being Divided by 28, the Quotient $7 \frac{21}{2} \frac{1}{8}$ is the fourth Ferm defired.

CHAP:

CHAP. V.

\therefore Of the Componad Rule of Tbree. -rife Compoinat Rixle of Three, is whein more than three Terms are propounded.
2) Under the Cemponnd Rule of Tbrec is compteindent the Domble Rule of Three, and diverstiukes of plaral proportion.
3. The Doubte Rule of Three, is when five Termsare propounded, and a fixth in proportion to them is required.
4. In this Rute the five Terms given do confift of ewo parts; firft a Suppofition, and then a Demand; the Suppofition is exprefFed by three of the Ferms propounded, and the demand by the other two.
5. And here the greatef difficalty, is in placing of the Terms; for which obferve amongt the Terms of Suppofition, which of them hath the fame Denomination with the Term required, referve that for the fecond place, and write the other two Terms in the Suppofition one above another in the firt place; and laftly, the Terms of Demand one above another, likewife in the thitd place, ff futh fort, that the uppermaft may have the faine denomination with the-appertiof of thofe in the firf place.

K 2
Esamp!

Example.

If 6 Clerks ean write 45 theets of Paper in 5 Dayes; How many Clerks can write
 on is concerning the number of Clerks, the 6 Clerks mult therefore parfers the feoond place, and the Dayes and Paper in the Suppofition mult be fet in the firft, oneoverthe other, of which, if Paper be the appormoit in the other Terms, the Paper put beffot over the Dayes in the thirc place and then the Number in the Quettoncwill fand thus;

$$
45-6 \operatorname{zon} \therefore
$$

$$
5 \text { ser (14 }
$$

c. 6. The Terms psopgnided being tho placed, the Question may be pefolved by two Single Rules of Threa in this manner.

1. As the uppermoft Term of the firs place is to the midder, io is the upermolt Term in the lant place, to apurth Number.
2. As the lower Term of the firt place is to that fourth Number, 10 is the lower Term of the laft place te the Term requi rad.

But in both thefe Proportions, conicide, pation mutt he had to the Trm required, namely, whether it muft be moreor lefs than the middle Term given : In

In our prefent Queftion, the fourth term in the firt proportion mult be greater than the fecond ; for it is plain, that more work will require more men; therefore 1 fay,

as 45 . 6 : : 300 . 40 Clerks.

But in the fecond proportion, it is likewife plain, that the mone time is given, the femer perforis are required; and therefore in this proportion, 5. 40, 13. 1 multiply the middle term by the firf, and the proInuct 2 via I dimide by 13 , the lade, end the Quotient ir is $\frac{8}{3} \frac{2}{3}$
\therefore 2. Exexptre: If 100 L gain 6 2. in 12 months, what fhall 276 l . gainimi 8 months? In this Q moftion theterims mult be thas placed.

$$
\begin{aligned}
& 100 \text { - } 276 \\
& 12 \\
& 18 \\
& \text { - 1. 100 • 6:: } 276 \cdot 16: 56 . \\
& \text { 1.2. } 12 \cdot 16 \text { - } 56: 518.24 \text { • } 84
\end{aligned}
$$

CHAP.

Che Englif acturtiv.

CHAP.VI.

Of the Rule of Fellowbloip. ,

THe Rules of plural proportion are thofe, by which we Refolve Queftions -that/are difcoverable by more Rules of Three than one, and cannot the performed by the double-Rule of Three mearioned inthe laft chapter.

Of thefe Rules there are divers kinds and varieties, according to the nature of the Queftion propounded; I will only mention one, and refer the reft to my farger treatife of this Subject.
2. The Rule of planal proportion that: mean to mention, is the Rule of Fellow /hiph
3. And the Rule of Fellowfhip is that by' which in Accompts amongft divers Men, (their feveral ftocks together) the whole Lofs or Gain being propounded, the Lofs or Gain of each particular man may be difovered.
4. The Rule of Felloophip is either fingle or double.
5. The Single Rule of Fellowfhip is, when the ftocks propounded are fingle numbers; $A s$ in this Example: A and B were Partners in añ Adventure to Sea, A put in 25 l. $B 56$, and upon return of the Ship, they fold the Fraight What part of his sot is due to A_{1} and what to A ? tomefot te this and the literene; fipips; the fup of the ftocks muft be the firft term in the Rule of Three, the whole gain the fecond, and each particular flock Ghe third; this done, repeating the Rule of Three oas ofteni as sebere ane pirticular gtorks ip the Quetion the foirth termsprot duced by thefe feveral operations are the refpective Gains or Lofles of thofe particular ftocks propounded; fo in the prefent queftion, the Refortion will beas here you
fee.

$$
81.50: 925\} 15 \div 432 .
$$

6. The Double Rule of Fellowhip is, when the focks propounded are double numbers, that is, when each fock hath relation to a particular time. A, B, and C, hire a piece of Ground for 45 t. per Aninum, in which A häd 24 Oxen 32 days, $B 12$, for 48 days, C 16, for 24 days; now thequeftion to be refolved is, What part of the Rent each perfon muft pay ?

For this purpofe you muif firlt Multiply each particular flock by its refpective time, and take the total of their Products for the firt term, the Gain or Lofs for the fecond; and every man's particular ftock and time K_{4}
for
for athe third; thindone repeating the Fivile, bfantreewo pfoes as there are Pifedids of the doudle Nupabers ; the fourthterins piof aticed uponthoforeveraloperations are the nombers fooght so then in the queftion propounded, che Prodict of 24 and 32 is $76 \%_{4}$ the Product of 12 and 48 is 576 , and the produccoof 16 und 24 is 384 , the fam of thefe Ppodiuctionstye8, tohich is the Frfe verm, is lithe Prept hethe focend, and each particular Prodact the third;

By which three Operations thequeition is Refolved.

SHA

THE ENGLISH

ACADEMY

0

$\therefore \quad$ Of GEOMETRY.

Of the Definition and Divifon of: Geometry. EOMETRT is the Art of Meatusring well.

I
2. The Subject of Gromery is Magnitude, or contimed Quantity', whole parts are joyned together by a common tepurior limit.
π^{3} Magnitude is either a Lite, or rome. thing made of aline or Lines.
4. A Line is a Magnitude, confifitig orthby of length, without either breadth or thicknefs, the term or limit whereof is a Point.

1. A-Poist is an indivifible fign in Magniunde. A Point therefore is no quantity, bot the beginging of ah continued quantitics, which are divififle in power infinitely.
2. A lina is eitherconfidered. fimply by it felf, or elfe' comparativety with another Line.
 Either Aight or Θ blique:
3. A. A ight line, is that which lyeth equally between hit Points.
-2 An Obligue line, is either circular or mist.
4. A. Meriabuy soricirciler Line, is that which is equally diftant from the middle of the comprehended fpace, which middle is called the Contrit, athathe diftance between: that Centre ard the Circumference, is called the Redienis
5. Lines comparxad to one another are of the fame or different Species.
 Species, are either Parallel or Angułar.

H3v Parcllet lines, are fictry as are equally diftant in all places, and are eetber Rigthe lined Parallelss or Circular.,
14. Right lined Parallels, are. frechashboing in :rne phd the felf fant plane, and infinitely produced on both gides; do never meer in any part.
15. A Circuler Porallel is a Circle drawn .within or withont anothes Circle.

Tete Engling acaduxe
16. Angular lizes are fuch as inclining,or bowing toone another, touch one another, but notins directive.
-3 17oiAn Angceis either Right or Oblique. \& 18. AjRight Angh, is that whofe legs or Indesare porpomdicular to one another. \therefore II. Anothlique Jagke, is that whofe legs or fides do incline to one another upan one fade nore thon qpenanothes. :

2Q.: An Oblique zingle is cither Acdutco, or Obtufe.
21. Aba Arute Obligue Angle, is that which is lefs than a Right.
$\because 25$ An Ohtrifs oblique Angle, is that which in: grepter thaniarightat, Angle:
\because 23: The Menfure of ian Angile, is the Arch of a Circlecdefribed upon the: Angiliar Point andinterfected between the fides of the Angte fafficiently prolonged; bat of *dis Meafmre thercxan be pli cersain knownledge, unlefs thequatity ef thet Arth be axt -ptoffedin Nanhers
240. Every Eirclo therefore is fuppofedito be divided into 360 equal partsoc catled De 8 gres, and every Degrec into 60 Minartes, and overy Minate into 60 Seconds, and fo Eorwandy, athers fuppore every Degitee to an cubdividedirta 10 parts; and every odt of thofe innoisotiore, and fo fortward, fas far as jou pleafe.
'25. A Semi-cirle is the half of a. whole Circle, and consaiacthi8a Degrees.

$$
\mathrm{L} 2
$$

26. A Qadiant, or fonrth part of a Circle, is go Degrees; ; and feeing that a Right Line falling Perpendicularly: upon a Right Lipe, doth make the Angles on boti-fides equal, and cutteth a Semi-circle intó two eQual parts, the fourth part of a Cirele, or 90 Degrees, muft needs be the Meafire of a Right Angle.
27. Thus are Lines compared with Line's of the fame Species, the comparing of Lines - of different Species, is the comparing of Right Lines with thofe that are Oblique or Circular.
28. And Right Limes, as they have reference to, or are conpared with the circumference of a Circle, areeither fuch as are infaribed within it, or applyod to it.
29. A Right Line, infcribed in a Circle, either paffeth throngh the Centre, as the Diameter and Radius, or is drawn befides the Gentre, as Chords and Siacts.
30. A Diameter, is a Right:Line inferibeditninough the Centre of the Circle, dtviding the Circle into two equal parts.
31. The Radius of a Circle is the one half of the Diameter; or a Right Line drawn fromsthe Centre to the Circamference; thus the Right line $G \cdot B \cdot D$; in Fig. w. "ise Biab mater, G B; or: $B D_{2}$, the Radius.
32. A Chord or Subtenfe, is an infrribed Right Line drawin through or befides the Centre bounded at bothends with the Circumference.
33. A Chord or Subtenfe, drawn through the Gentre is the fame with the Diameter.
34. A Cbord or Subrenfe, drawn beifdes the Centre, is a Right Line bounded at both eads with the Circumference,but always lefs than the Diameter.
35. Sines are either Right or Verfed.
36. A Rigbt Sise is half the Chord of the Double Arch, and it is either the whole Sine, and Sine of 90 Deg. or Sine less than the whole.
37. The whole Sine is equal to the Semidiameter or Radius of a Circle, as the right Line B. E.
38. A Sine lets than wholey is half the Chord of any Arch lefs than a Semi-circles as $C A$ is the fine of $C D$.
39. A Verfed Sine, is a part of the Diameter lying betweent the right fine and the circumference, as the Right. Line AD, which is one part of the Diameter, is the verfed fine of the Arch' $C D$, and the right, line $\mathcal{A} G$, which is the other part of the Dianseter, is the verled fine of the:Arch GEG.
40. A Rigbt line applied to a Circle, is either a Tangent or Secant.

4 r . A Tangent, is a right line without but tourching the Circle, drawn Perfendicular to the end of the Radius or Diameter, continued to the Secant.
42. A Secant, is a right line drawn from the Centre of the Circle, through the term

6a The Englif 気tademe.
of an Arch, and continued to the Tengant ; thus the right line $F D$, is the Tangent, and the right -line $B F$, is the Secant of the Arch C D, or of the Aich CEG, the Comple. ment theresf to a Semi-circle.
43. Thefe Lines thus infcribed in, or ap, plyed to a Circte, may to any limited Radies be drawn or made upon a Rule of Wood, Brafs; or other Metal; or, a Table may be made, exprefling the length of thefe limes in numbers, anfwering to every Degree and part of a Degree in the Quadrant or Semicircle; Tharis, the lizes of Cberdi and Verfed Sines may be made to any part of a Semicircle, and the lines of Sines, Tangents and Secests, ta any part of a Quadrant: The ufe of fuch Scales and Tables is fuch, that no Student in Geometric can well te without them; here therefore I will lay down fuch Propofitions as will fufficiently demonftrate the way of making thefe lines upen a seate or Ruler, bat as to the conftruetion of the Tables by which the lengths of thefe lines are.exprefled in Numbers: I refer them to my Trigonometria Britannica, and ouher Books of the like nature.

Pran

Propogition I.

Upon a Rigbe Line given, to erell a Peppendicular, from any Poiut afligned.

Let-it be required to ereft a PerpendicuJar to the line $D G$, from the Point B, in Fig. 2.take two equidiftant Points,as D and G, open your Compaffes to a convenient diftance, and fetting one Foot of your Com--pafles in B, draw the Arch $E C$, and keeping your Compaffes at the fame diftance, fer ane Foot in G, and with the other draw the Arch H IF, and through the interfections of thefe two Arches draw a right line, as BI, which thad be perpendicular to the Roint B.

But if it were required to erect a Perpendicular fromthe end of a line, do thus, your Compaffes being opened to any convenient diflance, fet one foot in the Point given, as at A, in the line $A B$, and the sther at D, or where you pleafe, and making D the Centre, draw the Arch $C A E$, and from the points C and D, draw the right line $C D E$, then draw the line $A C$, which thall be Perpendicular to the line $A B$, from the poizt \boldsymbol{A}, as was.required.

> M. 2: Propoo

The Englih gearenos.

-Propofition I.I.

- Rrant a Point afigned withowt a Right Line given, to lit fall a Perpendicular.

Let the given line be $D G$, and let the point afligned be L, at the diftance of $L D$ draw the Arch $D \not A G F$, then fetting one Foot of your Compaffes in D,draw the Arch $-I K$, and keeping your Compalles at the fame diftance, fet one foot in G, and with the other draw the Arch M; the right line L RD drawn through the Interfections of thofe two Arches fhall be Perpendicular to $D G$, from the Point L, as was required.

But if it were required to let fall a Perpendicular from the point E, upon the line $A \in B$, draw the line $E D C$:at pleafure; which being bifected at D, upon D as a Ceatre at the diftance of $E D$, draw the Arch $E A C$, fo thall the line $E A$ be perpendicalar to A B_{i} as. was required.

Propefition III.

To Livide a Right Line given into any number of equal parts:

Draw the line $A C$, and from the points ' A and C ereat the Perpendiculars $A E$ and $X C_{2}$ and at any diftance of the Compaffes,

Fet offas many equal parts as you pleare upon the perpendiculars $A E$, and $X C$, and draw the Parallel lines $E X, F V, G T, H S$, $K R, L O, M P$, and $N O ;$ and let it berequired to divide the right line into three equal rarts, open your Compaffes to the length of the line-given, and ferting one footin A, where the other foot fhall touch the third Paral'el, make a mark whiel is at \bar{Z}, draw the line $A Z$, fo thall the line $A Z Z$ be divided into three equal parts, as was deffred.

And thus may that line be made, which is commonly called the:Diagonal Scale.

Propafition IK

- How ta divide a Circte into 120 Partssand by confegnence into 360.

Draw the Diameter $B C$, and upon the point A, defcribe the Circle $C D B: L$, then draw the Diameter $D A \cdot N$, at Righe Angles, to the Diameter $C A B$.
2. The Simidiamelor or Radius of a Circle will divide the Circle into 6 equal parts, and fo is equal to the Chord of 60 degrees, $A C$, therefore being fet from D to F, fhall mark out the Arch DF, 60 degrees.
3. The fide of a Pentagon or fifth part of a Circle, is 72 degrees; now then, if youbifectur Radius $A C$ in the point E, and
make
make $E G=E D$; then hall $D G=D$ M, the fide of a Pentagon or Chord of 72 degrees, and $F M$ the difference between $D M, 72$ and DF 60 , that is the Chord of 12 , whick by bifection fhall give the Chord of 6 and 3 degrses, and fo the Circle may be divided into 120 parts, as wis propounded.
4. A Circle being thus divided into 120 degrees, the Arches are fo equal, that the third part of the Chord of 3 degrees will. fubdivide it into 36, without fenfible error; and your Circle being thus divided into 360: parts, lines at every degree, or half degree, drawn parallel to the Diaineter, fhall conft:tute the line of Chords, \& hatf thofe Chords the line of fines; $;$ and the Segments of the Diameter, the line of verfed fines, and as for :the Tangents and Secants, a lipe touching the Circle drawn perpendicular to the end of the Diameter, and continued to the feveral lines drawn from the Centre; through every degree of the Quadrant, fhall confttute the line of Tangents, and thofe lines. drawn from the Center to the Tangents. Gaall conftitute the line of Secants alfo. And thus may a Scale be made with the lines of Sises, Tangents, Secamts, and equal parts.

CHAP.

IT Itherto me have fpoken of the firt kind of Maynitude, that is, of Lines, as they are confidered of themetves, oramong themfelves.
2. The fecond kind of Magnitude, is that which is made of lines, that is a Figure.
3. A Figure is that which is every where bounded, whether it be with one only limit as a Circle; or with more, as a Triangle, Quadrangle, Pyramis, or Cube, orc.
4. The terms or limits of every Figure, are either Lines or Superficies.

S: A Figure which is terminated by Lines is a superficies.
6. A Figure, which is bounded or limited with feveral Superficies, is a Body or Solid.
7. A Superficies is a Magnitude, confifting of length and breadth, and is either right lined, curve lined, or compored of both.
8. A Right Linied Plame or Superficies, is that which is Terminated with right lines; and it is cither a Triangle, or a Triangus late.
9. A Trianglt, or the firft right lined: Figure, is that which is comppebiended by M_{4} the

Thye Engligh arcavemp.
three right lines. It is dintinguifhed from the fides, or from the Aggles.
10. In refpelt of the fides, a Triangle is either Ifopleuron, Ifefceles, or Scalenum.

An foaplearen Triangle, is that whith hath three equal fides. An I/ofceles, which hath two squal lides. And a ScalenAms whofe three fides are all unequal.
11. In respect of the Angles, a Triangle is either Right or Oblique.
12. A Right Angled Triangle, is that which hath one right lise.
13. An Obligue Angled plarte Triangle, is either Acute or Obtule
14. An Obligne and Obrufe Angled plane Triangle, hath two Acute Angles and one Obtufe; an Acute angled Triangle hath all the three Angles Acute.
15. The fecond fort of right lined platies is called a Triangulate, or a Plane, compoled of Triangles.
16. The fides of a Triangulate, are in number more by two than the Triangles, of which it is compofed.
17. A Triangulare, is either a Qyudnougle, or a Atultangle.
\therefore 18. A Quadrangle, is a Plane compremended, by four right lines, and iseither a Pi.rellelogramcr a Trapezium.
19. A Parallelogram, is a Quadrangle, whofe oppofite fides are Parallet or Equidiftant, and it is either Right Angled or Orique. 20. A
20. A Rigbt Anegled. Parallologram, is that which hath every Angle Right 3 and it is cither a Square or an Oblong.
21. A. Square is a Right Angled Parallelogram, whofe four ides are equal, and the Angles Right.
22. An Oblom, is a Right Angled Pazalkelogram, whote Angles are all right, but the fides unequal.
23. An Oblique angled Paralliolograin, is that whofe Angles are all Oblique, and is cither a Rhombus, or a Rhomboides.
24. A Rhombus; isan Oblique Aggled Parallelogram, of equal gides
25. A Rbomboides, is an Obligue angled. Parallelogram of unequal fides.
26. A Trapezinm, is a Quadrangle, but: not a Parallelogram, and it is either aight: angled, or Oblique.
27. A Rigbt Anglod Traperium, hath to oppofite fides, parallel; but unequal, and the fides between thein perpendicular.
28. An Obtigus Angled Trapeziom, is a Quadrangle, bat not a Parallelogram, having at leant two Angles thereof Oblique;and: none of the fines Papallel:
29. A Rigbt angled Multangled Plane, is that which is comprehended by more than : four lines.

30, A Multargled Rigbt lined Plane, or. Palygon, is either Ofdinate and Regular, or, Inordinate and irregular.
ya Che Eriglifi Ecavemp.
: 31. Ordinate and Regulare Polygons, are fiach as are contained byequal fides and angles, as a Pentagen, Hexagon, efe.

- 32. Inordinats or Irregular Rolygens, are fuch as are contained by unequal fides and angles.
\therefore 32. Haring thus drewed what a right lined Figureis, with the feveral forts of them; we will now fiew, how they may be meafur: ed, bothin refpect of the lines by which they are bounded, and al6o of their Area or Superficial Content
$\therefore 33$. And firtt we will:hew how the lioes, and angles of all plane, Figuress efpecially Triangles, may bemeafured, as being the firit and chiefeft of them, and into which alliother may be redaced.:
: 34. The fides of all plane Triangles, and other plane Figures, are to be Meafured by the frateior line of equal Parts.
1:35. The Angliss may be meafured by the lines of Sines, Tangents, or Secants, as well as by the line ; of chords; but here it fhall fuffice to fhew how any Angle may be protracted, or being protracied, be Mcafured by the line of Chords only.

Propgation I.

How to protract ox lay down an Angto to any quantity or number of Degrees propafed.

Draw a line at pleafure at $A \cdot B$, then $\alpha-$ pen your Compafles to the number of 60 degrees in your time of Chords, and fetting one of that extent:in B, with the other delcribe the Arch $C \cdot D$, and from the point B, let it be required to make an Angle of 40 degrees; open your Compaffes to that extent in the line of Choads, and fetting one Foot in " D, with the other make a mark as at E, and draw the lime E, fo'mah the Angle $A B E$ contain-40 degrees, as wasrequired.

Prepofition 11 .

Howrof find the quantity of any yangle alicea dy protratiod

- Let the quantity of the Angle $A: B E$, be required; open your Compaftes in the line of Chords, from the beginning thereof to 60 degrees, and fetting one foot theireof in the point B, with the other defcribe the Arch $D E$, then take in your Compaffes the diftance between E and D, and applying that extent to the line of Chords, it will fhew you the number of degres contained
in that Angle, which in our Example will: be found to be 40 degrees.

Thefe things premifed, we will now thew gou how all plade Triangles may be meafured, in refpect of their Sides and Angles, both by the Scale, and alfo by the Tables of Sines and Tangents.

CHAP. III.

Of the Solution or. Memfuration of plase Triangles.

T N the Solution of plane Triangles; the angles only being given, the fides cannot be found, but the reafon of the fides only; it is therefore neceflary, that one of the fides be known. .
2. In all plane Triaggles, the chreeangles are equal to two Right: two Angles. therefore being given, the third is alfo gi* wen; and one of them being given, the fimm of the other two is allo given.
3. In a Right angled plane Triangle, one: of the Acute Angles being given, the other is alfo given, it being the Complement of: the other to a Quadrant or 90 degrees.
4. In a Right Angled plane Triangle; there are feven Cafes, whofe Solution flall he hewed in the Problems following.

5. The:

5. The fides comprehending the Right angle we call the legs, and the fide fubtending the-Rightangle, we call the Hypothenufo.

- Problems I.

The Legs given, to fixd an Angle and the Hipot benufe.

In the right angled pant Triangle $A B C_{2}$ lot there be given the legs:
$\left.A B Y_{3} 12.\right\}$ To ind $\left\{\begin{array}{l}\text { Hypot. } B C . \\ A n g l . B \text { and } C .\end{array}\right.$
Draw a line at pleafure, as $A B$, and upos: the point A, erect the perpendicular $A C$, and by help of your Scale of equal parts,fet off from A to $B, 512$, and alfo from A to $C, 384$, and draw. the line $B C$, for the $H y-$ pot tenufe, which being Meafured by the fcale of equal Parts, will be, found to be 640 and by the line of Chords, the angle at $B 36.87$, whofe complement is the angle $A C B, 53$. 73.

By the Tables, the Proportions are,
1; $A B$. AC :: Radius . taing. B.
no $A B \cdot A C::$ Radims. $B G$.

THa Engifh arcabemp;
Problem. II:
The Angles and one Leg given to find the H pothenufe and the otben. Lig. .

Drawn a line at pleafure, as $\mathcal{A}: B$ and at Right angles the point A ened the perpendicular $A C$, and by your fcale of equal parts fettoff frogruat to bnis izi, ahdaponitheipoint
 draw the line $B E$, till it cut the perpendicular $A C$, thenmeafure the litios $B C$ and $A C$, by the fcalcof equal parts, fo mall:the one, to wit, $B C$, be the Hypothenufe, and $A C$; the other he inguiredt:

By the Tablesjetis Proportionsare,
3. Rad. AB : 4 B. AC.

14 SigeC ABE Rad. BC $\because G \cdot i \overbrace{i_{1}}$

Problem III.
The Hyputhenufo:and Obliqua figlos givarn to.findebe Legs.

Draw. a line at pleafure, as A B, and upon the point \mathcal{B} protract one of the angles given, fuppofe the leffer $A B C, 36: 87$. and draw parts, number the given Hy pothenufe from B to C.640 and from the point C to theqine $A B$, let fall the Perpendicular $A C$, then is $B A$ orefand $C i s$, the other leginquired.
\therefore By the Tables; the Proportionif, 5. Rad. . IC:: sB. AC.

Problem I V:

The Hypot benufe and one Leg given, te find sitherifules atid'the otbir Leg.

6
Draw a line at pleafure, as $A B$, and Uy yotr fale of equat parts, number from B to A, the quantiry of the'given teg $A B, 512$. then uponthe point ittect the Perpendichlar AB, afid opening your Compafes to the
 coite Foot in B, and move the other, till it touch the Perpendscular AC, and thete draw $B C$, fo fhall $A C$ be the leg inquired, and either:Angleinay be found by the line of Chords.

76
The Englifa acatrunt:
By the Tables, the Proportions are,
6 BC - Rad : AR MSiveC. \qquad

- M 1 A

7: Rad. COSine BA AO:
6. Hitherto we have Spoken of Right angled plane Triangles; the Problems foltowing concern fuck as are Oblique.

The angles in anOblique angled plane triangle one fie given, to find the ot her fides.

In the Oblique angled plane Triangle $B C D$, let there be given the fide CB 632, .and the Angles DCBr1.07.D. 26.37:

Draw the line $C B$ at pleafure, and by your scale fer off from C to $B \sigma_{32}$, and upon thole points protract the given Angles $D C . E$ II, $07 C B D .142 \cdot 56$, and draw the lines $C D$ and $B D$, till they interfect one 2nother, then hall the one fie be $C D 865$, and the other DB 273.

By the Tables, the Proportion is,

1. Sine $B D C: B C:=$ s $D C B, D B_{0}$

Che English acabrate.
Problem VI.
\because Two fate of an in and le opposite to one of them thing given to -find abe other Angles and Hie third Side, if it be known whet her -the Angle op. possie to the ot her given fade be Acute or Obtuse.

In the Oblique angled plane Triangle $B C D$, let there be given,
The Sides $\left\{\begin{array}{l}C B 632 \\ C D \\ C\end{array}\right\}$ Eng. D. 26.37.
Draw the line $C D$ at pleafure, and by your scale fer off from C to $D, 865$, and upon the point D protract the Angle $C D B$ 26. 37 . and draw the line D B, then open your Compaffes to the length of the other tide $C B 632$, and fitting one foot in C, turn the other about till it touch the line $\boldsymbol{D} B$, which will be in two places, in the point \boldsymbol{B} or point neareft to D, if the angle óppofite to the gide CB be Obtufe, but in the point E, or point farther from D if Acute; according therefore to the Species of that Angle, you muff draw either the line $C B$ or $C E$, and then you may meafure the other angles and the third Nide, as hath been hewed:

By the Tables, the Proportion is,
2. $C \boldsymbol{B}$. Sine $D:: C D:$ Sine B.
3. Sine D,C E: : Sine C.. BD. Pro=

Problem VII.

Truo Sides witb the ong licomprodended being;ivens. ce fiud the ather Augtars, andithe Ibixd Side.

In the Oblique angled plain Triangle $\angle B C: D_{2}$ let there begiven,

The Sides $\left\{\begin{array}{c}D C 863 \\ B C 63\end{array}\right\}$ Anglic. 11.6%.
Draw a line at pleafure, as D C 865 , and; by your Scale fet eff from C to $D, 86$, ; thon protract the Angle at C [1.ro7, and draw the line, $B C$, and by your seale feet off from. C to $B 632$, and draw the line $B D$, and fo have you conflitured the Triangle: B iO C, in which you meafure the truges and the third fide, as hath been thewed; bat to refolve this Problem by the Tables, It is Fomewhat more troublefome.

1. To find the Angles, the proportion is,

$\frac{1}{2} Z \ll+\frac{1}{2} X \lll d B C$.
$\frac{1}{2} Z \lll+\frac{1}{3} X \lll B E$.
2:. To find the thirdsides.
Sive D.. BC : : Sine C . BDD.

Problem VIII. .

The tbree fideegiven to fond an Angle.

\therefore Let the given fides be $D C 865 . B C 632$. and D B 273.

Draw a line at pleafure, as $D C$, and by your Scale fet off from C to $D .865$, then 0 pen your Compafles to the extent of ieither. off he otber hides, and fetting one foot of your Compamt in C_{3} with the other draw an Occult areb; then open your Compaffes to the extent of your thind fide, and fetting one feot in D, with the orher foot defcribe another Arch cutting the former in the peint $B+$ then will the Lines $B C$ and $D B$; contitite the Triangle; whofe Angles may be meafured; as hath beeh already fhewed.

To refolve this Problem by nambers, the: Proportions are for the Segments of the. Bafe:

As the bafe is to the rum of theother fides; P is the difference of thoferides to the difference of the Segments of the Bafe; which; being fubtracted from the Bafe, half the remainer will thew where the perpendicular muftefl fuppore at F, and conftitute the two Risht angled Trianges BDF, and ${ }^{j}$ F-EC, in whith we hate, given the Hypothenifes $B D$ and $D C$, and the Legs $B F$ and $C F$; and therefore we may find the Angles
80. Whe Englifin acatemy. Angles of thofe Triangles, as hath been mewed in the fourth Probleq.

Problem IX.

To find the Superficial content of Right lined
Figures.
Having fhewed the Menfuration of Trian-: gular planes in refpect of their fides and Angles, we will now hew haiw the Area or Superficial content of them, and any other plane Figures may be found: And becaufe all many-fided Figures may be beft Meafilred by reducing then firft into Right angled Triangles, Quadrangles,or Trapezias, we will firft. Jhew how the Area or Superficial content of thefe Figures may be readily: found ; and firft of a Right or Oblique angled plane Triangle.
2. To Meafure the Right angled plane Triangle $B D F$, in Fig, 7 . Multiply $B E$ by F, D, half the Product flall be the content.

3: To Meafure the Oblique angked plane Triangle $B D C$, let fall the Perpendicular $D F$, then Multiply $B C$ by $D F$, half the Product fhall be the content.
.4. To find the Area or Superficial content of any Oblique angular Trapezium, convert it into two Qblique angled Triangles, by a Diagonal, as the line $B \mathscr{D}$ in the Trapezimm $A B C D$, then tura the Oblique the Product fall be the content. In like mamner may any other Irrégular Multangle be allo meafured by tartring it into Triangles and Trápeztums, and computing them reverallys and adding ay thér contents to: gether.

Vide A

Problim 1.

The Diameter of a Circle being given, to find the Circumference:

Tidt B.

The Circuinference of a Circle whole ${ }^{\text {de }}$ ameter is 1 , is 3.14159 and thereforte,

As 1 is to 3.14159 , So is any other Diameter; to the cricurferenee arfiveting that © Diameter.

Problein II.

The Diameter of a Circle being givers, to find the Superficial comtent.
'Arcbimedes hath Demonitrated, that the Area of a Circle is equal to the content of a Right angled plane Triangle, whofe Legs the Circumference by half the Diameter, or the whole Diameter by the fourth part of the Circumference, they taking the Diameterof a Circle to be one, and the Circumference 3.14159 , the Superficial content of fuch a Circle will be found to be 0.7853975 And therefore, As I is to 78539 , fo is the Square of any other Diameter to the Superficial content required.

Pröblém III.

The Diameter of a Circle being given, to find Wefide of: a fouare which may be infcribed within ibajame Earcle.

The Chord or Subtenfe of the fourth of a Circle, whofe Diameter is 1 , is 7071067 ; therefore, as one, to 7071067 , fo is the Diameter of any pther Cirele, to the. Side required.

Problew

Problem IV. .

The Circumferience of a Circle being siveng to find the Dimmeter.

By the Diameter to find the Circumference, the proportion by the tenth Problem is; As 1 to 3.14159 , fo the Diameter to the Circuinference, and therefore patting the Circumference of a Circle to be 1.

As 3.14159 . $1:: 1$. 318308 .

And therefore ast to 318308 , fo is any other Circumference, to the Diameter fought.

Problem V_{0}

The Circumference of a Circle being siven, to find the Superficial content.

As the Square of the Circumference of a Circle given, is to the Superficial content of that Circle, fo is the Square of the Circumferepce of any other Cixcle; to the Superfio cialcontent of that other Circla

Apd is a Circle whofe Dianetor is $\overline{1}$, the Circumference is 3.34159 and the Area 7853975 , and fuppofing an Unite to be, the Circumference of a Circle, it is, as the-fquare of 3,14159 - $78539.75:: 1$ - 0079578 , and therefore, As $1 \cdot 0.079578$, fo is the
Pquare
fqu

84 The Englifh armotne.
Equare of any other Circumférence; to the Área defired.

Problem VI.

The Circumference of a Circle being givento find the Jide of i fguare whict maj be friftribed within the Jame Circte.

As the Circumference of a Circte whofe Diameter is 1 , viz. 3.14159 , is to 707 roj , the fide of the infcribed squate of that Circle, To is the Circumference of any other Cirele, to the facte inquited; and puttíng the Circumference to be Unity, it is, as 3.14159-707107:: . $\mathbf{2 2 5 0 7 8 \text { , thero- }}$ fore,

As I to 225078, fo is the Circumference sivien to the fide inquired.:-

Problem VII.

The fuperficial cont ent of a circle beng sio ven to find tbe Diamettr.
-, This is the Converfe of the a 15 Problith, the Diameter given, to find the conlent, for which the Propertion its, whicing 39 年, 30 cidorheffidare of che tiameter; to the ebutent: sdadtherefore-we truill fay; as 7893975 is T0 $¥ \sqrt{0} 7$ to 1.275 .243 and hence, 1 to $1.27324 i$ fo is the Area, to the Square of the Dismeter.
<tse Englih accutaty.
Problem VIIT.
\therefore The Superficial content of a Circle being gio ven, to find the Circumference.

This is the Converfe of the 14. Probtem; the Circumference given, to find the Content.

As ito 079578 , fo Circumference \uparrow quare, to the Content: And therefore,

As 079578 . : : : 1 . 12.5664 , and by confequence,

As ito 12.56640 fo the Area, ro the Square of the Circumference.

Vide C.
Problem IX.
The Axis or Diameter of a Spberi being gio ven, to :find the Supperfacial Content.

As the fquare of the Ihiameter of a Circle, "which fuppofe 1 , is 103.141 go the Area, to is the fquare of the Axis giver, to the Aree that is required.

AFter the defcription of lines and planes, the Doctrine of Bodies is to be confidered.
2. A Solid or Body, is that which hath Length, Breadth and Thicknefs, whofe bounds or limits are Superficies.
3. A Solid is either Plane or Gibbous.
4. A Plane Solid, is that which is comprehended of Plane Superfices, and is eithera Pyramide or Pyramidate.
5. A Pyramide, is a folid Figure, which is contained by Planes, fet upon one Plane or Bafe, and meeting in one point.
6. A Pyramidate, is a folid Figure, compofed of Pyramides, and is either a Prifme or a mixt Polybedron.
' 7. A Prifane, is a Pyramidate or folid Figure, by Planes, of which there two which are oppofite, are equal, like, and parallel, and zil the other Planes are parallelograms.
8. A Prifme, is either a Peitabedron, 2nHex:hbedron, or a Polybedron.
9. A Pentabedron Prifme, is that, wbich is comprchended of five fides, and the Bafe a Triangle.

Cle Englif afademp.
10. An Hexabedron Prifme, is that which is comprehended of fix fides, and the Bare a Quadrangle.
11. An itexabedron Prifme, is either a Parallelipipedon, or a Trapezikn.
-12. A Parallclipipedon, is that whofe fides or oppolite planes are parallelograms.
13. A Prifme, called otherwife a TrapeziNm_{2} is that folid, whofe oppofite planes or fides are neither parallel nor equal.
14. A Panallelipipedon, is cither Right angled or Oblique.
15. A Rigbt ainglcd Parallelipipedon, is that which is comprehended of right angled fides and it is either a Cube or an Oblong.
16. A.Cube, is a Right angled parallelipipedon of equal fides.
17. An Oblong, is a right angled rarallelipipedon of unequal fides.
18. An Oblique angled Parallelipipedon, is that which is comprehended of oblique fides
19. A Polytiedron, is that which is comprehended of more than five fides, and the Bafe a Multangle.
20. A mixt Polybedfon, is that whofe Vertex is in the Centre, and the feveral fides expofed to view, and of this fort, there are only three; the Octabedron, the Icofohedron, and the Eodecabedron.

2 r . An OEtabedron, is a folid Figure; which is contained by eight Equal and Equilateral Triangles.
22.An

88 Che Englifi atcatury.
22. An Icofobedron, is a folid Figure, which is contained by twenty Equal and Equilateral Triangles.
23. A Dodeciabedron, is an Folid Figure, which is contained by twelve Pentagons, Equilateral and Equiangled.
24. A Gibbom folid, is that which is comi. prehended of Gibbous Superficies, and it is either a Sphere or Various.
25. A Spbere, is a Gibbous body, abfolutely Roand and Globular.
26. A Varions Gibbowi Body, fothat whith is comprehended by various fuperficies and acirentiar bafe; and is cittier a Cobte, or a Cylinder.
27. A Cane, is a Pyrumidical Body, whofe Bafe is a Circle.
28. A Cylinder, is a folid Body of equal thicknefs, having a Circle for its Bafe. The folidcontent of thefe feveral Bodies thay be Geafured by the Problems following.

Problem I.

The Bafo ind Alkitide of a Pyramide or: Cono giver, to find abt Soliad Contiont.

Multiply the Altitude by a third part of the Bare, or the whole Bale by a thind part of the Altitude, the Product fhall be the for lid Content required.

Problem II.

The Bafe of a Prifme or Cylinder heing givom, to findicbe fold cometrt.

Multiply the Bafe of the Prifme or Cylinder given, by the Altitude, the Product fhall be the folid content.

Problem II 1 .

In a Piece or Frijfum of a Fyramide, Cone or ot her irregular Solid, both the bafes being given, to find the content.

If the Aggregate of both the Bafes of theFruftum, and of the mean Proportional between them, be drawn into the Altitude of the Frufum, the third part of the Product Shall be equal to the folid content required.

Problem IV.

The Axis of a Spleere being given, to find the folid content.

A Sphere (as Archimedes hath fhewed) is equal to two thirds of a Cylinder circumfcribing it; now then, fuch a Cylinder being made; by the Area of a Circle multiplyed by the Diameter; and therefore the

$$
Q_{3} \quad \text { Area }
$$

Area of a Circle being multiplied by two thirds of the Diameter, the Product Thall be the folid content of a Sphere.

The Area of a Circle whofe Diameter is.' 1 , is 7853975 , which being moltiplied by 666666, the two thirds of the Diameter, the Product 523599 is the folid content of fuch a Sphere; therefore,

As 1 to 523598 , fo is the Cube of any $A x$ is given, to the folid content riquired.

FINIS.

2ix Mir
 THE ENGLISH
 ACADEMY:
 The FOURTH PART.

Of MUSICK.

CHAP. I.

of SINGING.

MUS IC K is the Art of modulating Notes in Voice or Inftrument.
2. It doth confift in Singing or Setting.
3. In Singing there are five things to be confidered : 1. The Number of the Notes. 2. Their, Names. 3. Their Tuncs. 4. Their Times. And 5. Their Adjuncts. 4. The number of Mufical Notes are three times feven, or twenty one, that is from the loweft Note of a Man's Bale, to the higheft of a Boy's Treble, we ufually reckon twenty one Notes; though there are fome

Bafes that reach below, and fome Trebles that arife above this ordinary compars.

The number of Mufical Notes is therefore divided by Septenaries,-becaufe there are in Nature, but feven diftind foundsexpreft in Mufick, by feven diftindt Notes, in the feveral Cliffs or Cleaves of the Scale; for the cigbth \& fifteenth have the fame found or tune, and therefore the name and cliff of the firt; the gth and 16016 of the fecond; the rothand inth of the third; the iith and $18 t h$ of the fourth; the 12 th and $19 t h$ of the fifth; the 13 th and $20 t h$, of the fixth; the 14 th and 21 th, of the feventh.
6. Thefe thrice feven Notes are defcerned by their places. A place is either a Rule or fpace, and therefore in eleven rules with their fpases, is comprehended the whole Scale
7. At the begianing of each rule and /pace is placed one of the firft feven Letters in the Alphabet, and thefe Letters are thrice repeated one above another, the letter \boldsymbol{G} being put upon the firft or loweft place of each Pepentary being the firft letter in the word Greecè, and in the firft fepentary, retained the Name and Form of the Greek Gamma, in remembrance, that the Art of Mufick, as other learned Arts came to us from thiat feat of the Mufes.
8. By thefe feven letters of the Alphabet, otherwife called feven clifs or cleaves, the fale
frale is dividod into three feveral parts of Mufick; the firt and loweft is called the bafc ; .the 2d. or middle part, the Mean; the thirdor:higheft part, the Treble. ${ }^{-}$As for the Nores, which do exceed this compafs, either in the bafe or treble'; they are figned with double letters in the fame manner, that the ordinary Notes are with fingle.
9. The fecond thing to be confidered in Singing, is the Name by which each of thefe Notes is called.
10. And for thefefeven notes, figned by the firft feven letters in the Alphabet, there are but $f x$ feveral games invented to belp the learner in the tuning of them ; ut, re, Mi, $\mathrm{fa}, \mathrm{fol}, \mathrm{la}$, , and for the foventh note, becaufe it is but half a tone above l_{2}, as the fourth is above M;, (whereas the reft are all whole tone)it is fitly called by the fame name with the fonrth, and fo the next will be an eight, or Diapafon to the firft, and confequently placed in the fame letter or cliff, and called by the fame name.
And thus they were wontto beplaced inthe Teale, in whichtre firft name ut being placed upon the fame line with the Greek Gamma, bath caufed the whole fcale to be called the Gamut; bat modern Muficians in thefe latter times, have rejected the names of $u t$ and $r e$, as finding the other four to befufficient for the exprefling of the feveral founds, and lefs burthenfome to the Memories of Practifioners;
11. This feale or G amut then is divided into

R

9

 The Eaglifh Mctuon four Columog In the firf you have the Alo phabetical kticens ot cliffs, the other three Shew the namus of the notes, afeending anddefoending saccor ding to their [cveral niamest keysIn the fecond column is fer the nabses of the motes as they be called, where is B duralix, or B harp, as having no flat in B mi, and then your notes ane called as they are fet there on the rules and fpaces afcending.

In the third Column is B proper, or B ndsuralis, which hath a B flas in B. mi only, which is put at the begiming of the line with the Cliff, and there you have alfo the names $3 s$ they are called on Rule and Space.

In the fourth Column is $B f a$ or B mollo. ris, having two B fats, the one in B wis, the other in E ha mi, placed as the other ; by obferving of which you have a certain rule for the Names of the Notes in any part.
12. In there t bree colums obferve this for agio nercol rule, that what name any note hath, the fame name properly hath his eight dbore or: below.
13. Although the whole ordinary fcale of Mufick d th contain three feptenaries of lines and fpaces; yet when any of the parts which: it is divided into, fhall come to be Prick'd out by it felf in Songs or Leffons, five Lines is onfy ufuad, for orie of tho [eParts, as beingfufficient to contain the compafs of notes thereunto bolonging: And if there be any Notes that extend higher or lower, it is ufuat to add a Line in that place with a Fen.

14. Though the feven Letters fet at the beginning of each Rule and Space, are feven Cleaives, yet four of them are only ufaal: The firt is called the E fa int Cleave or Cliff, thus marked $\overline{9}$ this is proper to the Bafe or Ioweft Part, and is fet upon the fourth line, at the beginning of Songs or. Leflons. The lecond is the C fol fant, which is proper to the middle or inner parts, and is thus marked 毛. The third isthe G fol reut Cleave or Clif, which is only proper to the Treble or highert, and is figned thus, \rightarrow on the fecond line of the Songs or Leflons; 3 and thefe are called the three figned Cliffs.

The fourth is the B Cliff, which is proper to all Parts, as being of two natures and properties; that is to fay, Fint and Sharp, and doth only ferve for the Elatting and Sbaiping of Notes; it is cailed by two Names, and figned by two Marks, the one is $\boldsymbol{B} f$, or B flat, and is known on Rule or Space by this mark, (6). The other is called E mi or B fiarp, and is known by this marr \boldsymbol{Z};
15. Concerning this fouthCliff, fou are to obferve : 1. That thei f fa, or B fiat doth alter both the Name and Property of the Notes before which it is placed; rhanging minto fas, and making that Note to which he is joyned, a Semi-tonefor half note lowere, 2. That the B mior B Barp alters the property of the Notes before which he is placed but not the Name; for he is ufually pla- their name ftill, but their found is raifed half a Tone or Sound higher. Laftly, note, that there two BCliffs are placed not only at the beginning of the Lines with the other Cliff, bat is ufiailly pat to fereral Notes in the piddle of any Sung or Reffon, for the flatting and 乃arping of Notes, as the Harmony of the Mulick doth require.
16. Of thefe four Notes now in ufe, M/ is the principle or mafter Note, for thiat be* ing found, the reft are known by this direCtion; after Mi, fing fa fol la, twice upward and la fol fa, twice downward, and fo you come to Mi again in the fame Cliff both wayes.
17. This Note $M i$, hath his being in four feveral places, but he is but in one of them at a time. Its proper place is in B mi, as in the fecond Columin of the Gamnt; but if a B $f a$, or B flat, be in its place, then he is in E la mi, as in the third Column of the Gawout, which is its fecond place. But if a $B \rho$.t be placed therealfo,then its in A la mi re, which is its third place. If a B fat come there alfo, then it is remov dinto its fourth place, which is \boldsymbol{D} la fol re, according to thefe Examples.

1. Example. . $\quad M i$ in $B \mathrm{mi}$.

Sol la fa fol la mi fa fol.
111. Example. Mi in File mi re.

The Englifh atatreme.
CHAP. II.
Of the Twnes of Notes.
He next thing to be confidered insinging; is the Tunes af Notes, which cannot be declared by Precept, but muft be learned either by the lively Voice of the Tea: cher, or by fome Inftrument rightly Tuned. Only oblerve that from m to $f a$, and fofrom la to $f a$, is but halfa Tone; but between any other two Notes is a whole Tone, as froin $f a$ to $f o l$, or fot to la. And in the firfe gaiding of the Volice, it will much help, if at the firlt Tuning, you found by degrees all thefe Notes, as fol $l a m i$ and at the fecond Tuniag, leave out la the middle Note: this will not only help you to Tune a Third, as from fol th mi, but it will alfo help you in the raifing of Fourths and Fifths, orc.
\therefore Of which there are fome Examples in the plain Songs following.-

Firf.
-Sol la mi fa folla fa fol fol fala fol fa mi la foo.
Second.

Solmi la fa mi folfa la la fafolmi fa la mi fol la fo S. 2

Tbird

Third.

Solle mifol mi fol la mi fa fol fa fol la mi fa.fol

fal fol fol la mifajol la fol la fol la mifa follafa

fol fa fol la mi fa fol la fa fol fol fol fol fala

fol la fol fa la fol fol fol fob fa ha fol.fa.

jol fa fol fa la fol fa mi fol mi fol fala fal

fa mi la fal la fol fa la fol fa mi la fol fod fol

fa fol la fol fol fol fa fol mi fot la fol.
CHAP.

CHAP. III.

Of the Time of Notes.

THe Notes in Mufick have two Names, one for Tume, the othcr for Time or Proportion. The Names of Notes in reference to their Tunes, are, as hath been faid, thefe four, Sol La Mi Fa; And their Names in Proportion of Time, are Eight; A Large;' 2 Liong, a Breve, a Semi-breve, 2 Mirum, a Crotchet, a Quaver, a Semi-quaver.

The four firt are of Augmentation, or Increafe; the four latter are of Diminution or Decreafe, and are thus proportioned. The Large being the firft of Augmentation, and longeft in Sound; the Semi-breve is the laft of Angmentation, and the mortert in Sound, and in Time is called the MafterNote, being of one Meafure by himfelf, all the other Notes are reckoned by his value, both in Augmentation and Dimination.

In Augmentation, the Lerge, is Eight Se-mi-breves, the Lons four, the Breve two, the Semi-breve is one Time or Nete.

In Dimimution, the latter four do decreafe in this proportion; two Minums make a Semi-breve, two Crorchets make a Mixum, two Qlavers make a Crutchet, and two Se-mi-quavers make a Quaver. As in the T2ble following may be feen.

$102:$
City Englifh Itaberne:
Notes of Augmentation.

m mimn \qquad

Notes of Dimoination.

CHAP. IV.

Of the Rajuncts belonging to Muficit: Notes.

T Here belong to Notes, thus defcribibed by their Number,Names, Tunes, and Time, thereferven things. A Tye, a Repeat a Paurfe, a Direct, a Clofe, with fingle and double Bars, and feveral Moods,
2. A Tye is a Semi-circle, whofe two ends point to the two Notes conjoyned, as when two Minums, or one Minum and 2 Crotchet thre tyed together; as alfo, when two or more Notes are to be Sung to one Syllable, or two Notes or more to be plaid with one drawing of the Bow on the Fiol or Violin.
3.The middle anderincipal Note is the S_{ρ} mibrive: And when an Note \& his halfnote in the fame place are conjoynod for one Syllable, the mark of the half Note, and of the Ligature too, is a point fét by the Note, as $\Longrightarrow 1$ and it is as much as if with the, To Notc his half Note were expreft, and conjoyned by Ligature, and prolongeth the found of that Note it follows, to half as. much more; thus' a Semi-breve, which is of it felf but two Mininums, having a prick after ; it, is made three Minkms, in one contimued, found, and foin other Notes. and Ditty together, or of Ditty with other Notes, and is marked thus, s. and is ufed to fignifie, that fuch a part of a Song or Leffon muit be Play'd or Sung over again from that Note over which it is placed.
5. A Paufe is a mark of reft or filence in a Song for the time of fome Note, whereof it hath its name. A line defcending from a fuperiour Rule, and not touching the Rale below, is a Semibreve Reft : the like line rifing from an inferiour Rule, and not touching the Rule above, is a Minum Reft: the fame with a crook to the Right hand, is a Crotchet Reft, and to the left hand, a luaver Rett: Alro a line reaching from Rule to Rule, is a Breve Reft, or a Paufe of two Semibreves; a line from a Rule to a third Rule, is a Long pause,or of four Semibreves, and two of them together make a Large paufe, or a Reft of Eight Semibreves.
6. A Direff in the end of a line, theweth where the Note ftands in the beginning of the next line, and is marked thus, 玉王 - 7. A Clofe is either Perfect or Imperfect; A Perfect Clofe is the end of Song, noted thas, \uparrow or thus, $*$ or with two Bars thwart all the Rules, or both ways. An Imperfect Clofe, is the end of a Strain, or ayy place in a Song, where aft the. Parts do

The Englifh acabemp. - ios nreet and Clofe before the end, and it is marked with a fingle Bar.

8. The ufual Kloods are two, the 1 marrfect of the more, when all goes by two, ex cept the Minims, which goes by three, as two Longs to a Large,two Breves to a Long, two Semibrrves to a Breve, three Minums to the Semibreve, with a prick of perfection; this Mood is thus figned, \boldsymbol{C}_{3}, and is ufually called the Triple Time.

The other ufial Mood is the Imperfect of the lefs; when all goes by two,as two Lougs to a Lairge, two Breves to a Long, two Semibreves to'a Breve, \&c. this is called the Comwon Time, becaufe moft ufed 2 and is marked thus, 載

Thus much concerning finging; I leave fetting to the larger Treatifes of this fubject.

$$
F I N I S
$$ The EIFTH P-ART.

- Of ASTRONOMIE.

СНАР. I.

of the General Subject of Afronomsie.

AStronomy, is an Art, by which we are Taught the Meafure and Motion of the heavenly Orbs and Stars that are in them.
2. The Heavenly Orbs arc either ä:argor, without Stars, as the Primum Mubilr, or tyussel, fuch as have Stars in them m_{2} as the eight inferiour Orbs.
3. The Stars are either fixed or moveathe: The fixed.Stars are thofe which al ways leep the fame diftance from one another: Dat the moveable Stars, otherwife called Plajets,

Planets, are fuch as do not always keep the fame diftance.
4. All the Stars, as well fixed as moveable have a double mption; the one occafioned by the Primum Mobile, from Eaft to Weft, the other natural or proper to themfelves, by which they move from Wef, to Eaft.
5. According to this double motion of the Stars, this Art of Aftronomy is divided into two Parts; the firft fheweth the motion of the Primum Mobile, and how the feveral Heavenly Orbs are by that carried round the World, from Eaft to Weft, which is called the Dikrnal motion of the Stars.

The, fecond part of Aftronomy, ineweth the Periodical motion of the Stars, in which the inferiour Orbs, according to their own proper and natural motion, do move from Weft to Eaft.
6. For the better underftanding of there feveral motions, the Primum Mobile, or tenth Orb, is ufually seprefented by a Sphere or Globe, with fuch.lines drawn about it as the Starsin their motions are fuppofed to make, or may help to difcover unto us, the quantity of their motions, and fuew the time of their Rifings and Settings, and fuch like.
7. This Spbere or Globe, is a round body, containing one Superficies, in the m:ddle whereof there is a point, from whence all Right Lines drawn to the Superficies are equal:
8. In the Sphere or Globe, there are ten imaginary Lines or Circles, of which fix are great, and four are fmall.
9. The great Circles are thefe which diwide the Sphere or Globe into two equal Hemi/pheres, and fach are the Horizon, exgrinootial, Zodiack: and the two Coly es; the two firt of which are called external and murable, the other internal and iminutable.
10. The LeferCircles, are thofe whith divide the Sphere or Globe, into two unequal Hemi/pheres, whereofone is more, and the other lefs than the half of the Sphere or Globe; fuch are the two Tropichs of Can. eer and Capricorn, and the Artick and Axrarick Circles, all which are reprefented in Fig. 9.
11. The Horizon, which is alfo called the Finitor, is a Circle, which divideth the vifble part of the Heavens from the not vifible; that is, the lower Hemi/phere from the upper, as the line $A B$; one of whofe Poles is in the Point direcily over our heads, and is called the $Z_{\text {enith }}$ the other Diametrically oppofite, called the Nadir, and noted with the Letters $Z . N$.
© 12. T he Horizon, is either Senfible or Rational.
13. That is called the Senfible Horizon; which bounds our fight, and feemeth to divide the Heavens into two equal Henirp丸eres.

14. And

14. And that is called the Rational or Intelligable Horizon; which doth indeed bifeat the Heavens; and this is Right, when it paffeth through the Poles of the World; or. Qblique, when one of the Poles is fomewhat clevated, and the other depreffed; or Parallel, when one Pole is in the Vertical Point or Zenith, for then the Horizon is Parallel to the 1 quator; it otherwife makes: therewith either Right or Oblique Angles.
15. Hence there is a threefold pofition of Sphere. 1. A Right, where the Horizon is Right; that is, where the etiquat or paffeth through the Zenith and Nadir, 2. Oblique, when the Horizon is Obligue; that is, when one Pole is fomewhat elevated and the other depreffed. 3. Parallel, when one of the Poles of the worldis in the Zenith.
16. In a Right Splsere, all the Stars do Rife and Set, but in an Oblique Spleere, fome are hid from our fight, and fome are always above the Herizon.
17. The Meridian is a great Circle, peculiar and proper to every place, and drawn through the Vertical point and the Poles of the World, to which when the Sun comes in his Diurnalmotion, in the Day-time he maketh the Mid-day, and in the Night time, he maketh Midnight. There may te as many Meridians as there are Fertical pints, but upon the Globe they are ufually drawn thro' every tenth or fifteenth Degree of the e A. quater. $\quad \mathrm{L}$ CHAP.

CHAP. II.

Of the Internal and Immutable great

 Circles.HItherto of the two External and Mutable Circles, the Horizon and Mcridan, Icome now to the Internal and Immutalde.
2. The frift Internal anddinmatable Circle is called the efquator, or Equinoctioub (ircle, which divideth the whole Sphere or Glohe into two equal parts between the Polis,to which when the Sun cometh, which is twice in the Year, the days and nights are cqual in all places bu: in a Parallel Sphere: this Circleis noted with the letters EF.
3. This Circie is also the meafure of Time; for as oft as is Degrees of this Circle do afcend above tle Horizon, fo many hou s are compleated in its going round.
4. The fecond Immutable.Circle is called the Zodiak, which is a great Oblique broad Circle, under which the flanets do always move; the Poles of this Circle are diftant firm the Poles of tle world 23 Degrees, 31 Minutes, and 30 Seconds, or. 23.53 Centefms.
5. This Circle doih differ from other Circles in the Heavens, in that other Circles to f p aik prarctly, have longitade of Length;

Léngth, but no Breadth, whereas this Circle is allowed to have both.
6. In refpect of Lengitude, this Circle is divided as othrer Circles commonly are into 360 Degrees, but more peculiarly into 12 parts, conftituting, as it were, the 12 Parts or Months efthe Year, or 12 Confellations of Stars, called Signs, each Sign tring fubdivided into 30 Degrees or Parts. The Names and Characters oftheferi 2 Confteilations, or Signs, are as followeth. A--ries V, Taurıss と, Gemini Π, Cuncer σ, Leo Ω, Virgo n, Libra \approx, Secrpio m. Sagittarius 7, Capricorrus vs? Aquariks mı, "ifces 7.
7. The Zodiack, in refpect of Latitude, is divided into 16 Degrees, that is, into 8 Degrees North-ward, and 8 Degrees Southward, becaufe all the Planets, except the Sun, do. in their Motions vary from the middle Line, fometimes oneway, and fome'times another; to the quantity of 8 De grees; and the middle line in which the Sun moves, is the Ecliptick Line, becaufe when the Sun and Moon are in Conjunction, the Sur is Eclipfed, but when they are in Oppofition, the Moon is Eclipfed.
8. Of thefe 12 Signs, 4 arc called Gardinals, viz. Aries and Libra, in which do happen the Vernal and the Autumnal exquinoctials; Cancer and Capricorn, in which do happen the Summer and the Wint:r Solftices.

U:2
9. Again
9. Again thefe Sigas are diftinguifhed into Northern and Southern; the Northern, figns are thofe which decline from the \mathbb{E} quat ${ }_{0} r$ towards the North Pole, as V, 8 , π, Φ, δ, ne ; And the Southers figns are thofe which decline from the Equator to: wards the South Pole, as $\bumpeq, m, \tau, v, w_{0}, *$. 10. All other Conftellations of fixed ftars. are referred to fome one or other of the 12 figes, whether they be the 21 Northern conftellations, called $V_{r} \int_{a}$ Minor, $V_{r} \int_{a}$ Major, Draco, Cephens, Arctophylax, Corona Borealis, Engonafus, Lyra, Avis, Caffiopeia, Perfins, Heniochus, Serpentarius, Serpens, Sagitta, AquiLa, Delphinus, Equifctio, Pegafus, Andromeda, Triaigulus. Or whether they be the is Sourthern conftellations, called Cetus, Orion, Eridenus, Luffus, Canis Major, Procyon, Argo, Hydie, Crater, Corvus, Centantus, Eera, Ark, Corona Auftr. Pifies Auftra.
11. The two other great Circles called the Colures, are the two Circles which pafs through the Poles of the World, and the four Cardinal points in the Zodiacks
12. That circle which paffeth thro' the Polos of the world, and the two Solftitial points in the Zodiack, which are the beginnings of \boldsymbol{g}^{-} and $\vee \infty$, and is called the Solftitial Colure.
13. That Circle, which paffeth through the poles of the world and the two 压quinoCtial points, or firt entranceinto v and \approx, is cilled the etiquinottial Colure, and in Fig. 9. reprefented by the line $D . C_{0}$ 14. The
14. The Leffer Circles of the Sphere are the two Tropicks of Φ and $v o$ with the Ar.tick and Antartick Circles.
15. The Tropick of of is a Circle joyned to the Zodiack in the beginning of $\%$, and is defrribed by the Suns. Diurnal Motion, when he is in the Summers Solftitial point, and is diftant from the $x q u i n o c t i a l ~ t o w a r d s ~ t h e ~$ North Pole 23 deg. $31^{\prime} 30^{\prime \prime}$ or in Decimal Numbers, 23 deg. 5. 25 . to which when the Sun cometh, he caufeth the longeft day and Thortelt night to all Northern; the Phortelt day and longeft night to all Southern Inhabitants $;$ and is noted w ith G go.
16. The Tropick of v, is a Circle joyned to theZodiack in the beginning of $v p$, and defictibed by the Suns Diurnal Motion, beirg in the winters Solftitial point, and is diftant from the Equinoctial towards the South Pole, 23 deg. $3^{1{ }^{\prime}} 30^{\prime \prime}$, or in Decimal Numbers, 23 deg. 5.25 parts, to which, when the Sun cometh, he maketh the longeft day and fhorteft night, to all Southern; the fhorteft day and longeft night to all Northern Inhabitants, and is noted with H wo.

Thefe two Circles are called of the Grceks Tgotixoi, à convertendo, becaure when the Sun toucheth any of the Circles, he is at his greateft diftance from the Equator, and returneth thither again.
17. The Artick Circle, is diftant from the North Pole of the world, as' much as
the Tropick of Φ is difart from the Equinoctial, and is noted with $K L$.

The Antarsicke cucle is diftant from the South Pole as much as the Tropick of wo is diftant from the 压quator, \& is noted with $O M$.
18. By the Interfection of any three of the greatef Circles of a Sphere is made a Spherical-Triangle.
19. A Spherical Triansle, is either Right Angled or Oblique.
20. A Right Angled Spherical Triangle, hath one Right Angle at the leaft.
21. An Obligue Angled Spbericali Irinngle, is either Acute or Obtufe.
22. An Acute Angled Spherical Trisngle, hath all its Angles Acute.
23: Ar ObtuSe AngledSpherical Triangit, hath all his Angles, eit herObtufior mixt, that is one Angle at the leaft Obtufc, and the other Acutc.
24. In Spherical Triangles, there are 28 \forall Varieties or Cafes, 16 in Recitangular, and 12 in Obligue Angular, whereof all the-ReCZangrlar and 10 of the Obligue Angular, may be refolved by one Catholick, and Univerfal Propofition ; for the underftanding whereof, fome things muft be premifed.

1. That in a Right Anglid SphericalT riangle, the Hypotenufe and both the Acute Angies are fuppofd to be noted with theirComplements.
2.That the Right Anglc is not reckoned amongft the Circular parts, and therefore one of the other five will be always a middle part, and the other four extreams Conjunct or Dis:

The

The Propofition is this :

A Rectangle made of the Sine of the middle part $\begin{aligned} & \text { Radins, is equal to the Rettuggle made of }\end{aligned}$ the Tangentis of the Extreams Conjuinti, or of the C'OIns of the Extrcams Disjanct: Therefore,

When two things are given', and a third ret quired, you muft firft find out the middle part, and where the other Terms be Extreams Conjunct or Disjunct. ; if tbe thingsgiven and inquired lie together, the middle is the middle part, but if they be disjoyned, that whish fanndet b by it felf is the middle part.

Note alfo, that whin a Complement in the Propofition doth chance to coscur with a Compl' ment ix the Circular Parts, you muft take the Siue it felf, or the Tangent it felf, becaufe cs of the $\mathrm{cs}=\mathrm{s}$. and ct of $\mathrm{fbe} \mathrm{ct}=\mathrm{t}$.
25. Thefe things being underftood, the Analogies to be ufed in every of the 16 Cafes of a Right angled Triangle, will from this Prepofition be as followeth.

	Bata	Q	Analogia.	
1	$B C$ $A$$\|$	$A B$		Rad cot . A: t B C. s A B.
2	$\left\|\begin{array}{c}A \\ A B\end{array}\right\|$	BC		cot.A.Rad:: s AB:tBC.
3	$\left\|\begin{array}{lll}A & B \\ B & C\end{array}\right\|$	A		$B C . s A B: 1$ Red.ct A.

$\left.4\left|\begin{array}{c}A B \\ A\end{array}\right| A C \right\rvert\, t A B \cdot \operatorname{cs} A:$ Rad.cot $A C$.
$5 \left\lvert\, \begin{aligned} & A C \\ & A B|A| R \cot A C:: t \dot{A} B \operatorname{cs} A\end{aligned}\right.$

${ }^{\sigma} |$| $A C$ | $A B$ | $\cot A C \cdot$ Rad:: cs A.t,AB. |
| :---: | :---: | :---: |

$8 |$| $A C$ | C | et A.cs AC $:=$ ct C. |
| :---: | :---: | :---: |

$9 |$| $A C$ | $B C$ | Rad.s $A:: s A C . s B C$. |
| :---: | :---: | :--- |

$10 |$| $B C$ | $A C$ | $S A . s B C::$ Rad.s AC. |
| :---: | :---: | :---: | :---: |

11 $\left.\left|\begin{array}{ll}A C \\ A C\end{array}\right| A \right\rvert\, s A G . s B C:$ Rad.sA.
$\left.{ }_{12}\left|\begin{array}{c}A B \\ A\end{array}\right| C \right\rvert\,$ Rad.s $A:$ cs $A B \cdot c s C 0$:
$13\left|{ }_{C}^{A B}\right| A \mid \operatorname{cs} A B . \operatorname{cs} C:$ Rad.s A

26. In Oblique axded Spherical Triangles, there are; as hath been faid, 12 Cafes, 10 whereof may be refolved by the Catholick Propofition, if the Spherical Triangle propounded be firtt converted into two Right, which may be done by this General Rule.

From the end of a fide given, being adjacent so an Angle given, let fall the Perpcndicular.

A Type of the feveral Varieties here, followeth.

4		ct C A B. R :: cs AC. ct ACB.
8. e	DC	$A C D-A C B=B C D .1 . \mathrm{Tri}$
$A C$		$A C D+A C B=B C D .2$. Tri.
		ct $A \mathcal{C} . \operatorname{cs~} A C B:$ R,t be

The Twelfth, is but the Converfe of the lalt taking the Angles for Sides, and the Sides for Angles; fo mall the Angle found, be the Side inquired.

CHAP. III.

of the Afcenficns and Defcenfions of the Parts of the $Z_{0 \text { odiack. }}$
Hitherto we have fpoken of the general Principles of Aftronomy, from whence the mation of the Primum Mobile is explained ; come we now to thefe affections which properly belong to the motion thereof, and theie are theAicenfion andDefenfion cal Rifing and Setting：

2．AAfronomical Rifing and Setting，is the Elevation of the parts of the Zodiack or E－ cliptick above the Horizon，and Depreffed under it，compared to the Afcenfion and de－ fcenfion of the parts of the 不quator；and this comparifon is in reference to diverfe Elevations of the Pcles．

3．But this Aftronomical Rifing and Set－ ting，takes his Denomination from the parts of the Zodiack；which are above the Horizon or beneath it，and are meafured with refpect unto the 压quator；for Aftro－ nomers do not refer the 压quator to the Zodiack，but，the Zodiack to the 压quator， for it is Zodiack，and not the 压quator which ftands in need of meafuring．

4．And an Arch of the Ecliptick or Zodi－ ack，is to be underftood two manner of ways；namely，Continued or Difcreet ；A Continued Arch，is when it is reckoned in the Æquator in a Continued Series，from the beginning of Aries，and fo forwardinto the confequent Signs．
5．A $\nu_{2} f$ freet Arcb ，is fo called，becaure it is not reckoned from the firf Degree of Aries，but from any other point；ass fromi the fourteenth of Gemini，to tes＝fourteenth of Tanrus．
6．Any part of the Zodiack is then faid to Afcend Right，when a greater part of the压quator．．

玉quator rifeth above the Horizon than of the Zodiack. And that is faid to bea greaten Arch of the Æquator, which is more than 90 Degrees.
7. Any part of the Zodiack is then fand to Defcend Right, when a greater part of the IEquator than of the Zodiack is bereath the Horizon.
8. Any part of the Zodiack therefore in faid to Afcend Obliquely, when a lefs part of the Æquator than of the Zodizek doth Arcend; as alfo, to Defcend Obliquely, when lefs of the eqquator than of the Zodiack is below the Horizo
9. Afienfor, is eithar Right or Oblique.
10. Right Afcenfion or Dufcenffot, is that which is in a RightSphere.

Ir. Ira Right Sphere, the four Quedrants of the Zodiack beginning from the EquinoCtial and Soltitial Points, do equally Aicend and Defcend, fo that in thefe whole Qivadrants as many Degrees of the Equator al of the Zodiaek do Afcend; but the intermediate parts of thefe Quadrants in the Zodiack do wary, and hate not equal Afcenfion and Defeenfion with the parts of the 压qua* tor.
12. Thofe Signs that are equally diftant from any of thofe Points, have allo equal Afcenfion, as G cmini and Cancer. And the Af cemfron of aSign is always equal to the Defcerrion of the fame.
13. In a Right Sphere therefore, four Signs oaly do rife Right, all the reft do rife Obliquely.
14. In an Oblique Sphere, the two halves that begin at the two 压quinoctial Points, do rife together, but the parts of thofe halves.do rife Obliquely. And thofe Signs that rife Rightly, do Defcend Obliquely, and the contrary.
15. The Afcenfion of oppofite Signsinan Oblique Sphere, taken together, are equal to the Afcenfion of the fame in a Right Sphere. And thore figns that are equally diftant from either of the Equinoctial Points, have cqual Afcenfions, becaufe they equally Decline from the Equator.
16. Berdes the Aftronomical Rifing and fetting of the ftars, or their rifing and fetting, in refpet of the Horizon and Fquator, there are other affections of the ftars to be confidered, namely, thofe which they have in refpect of the fun.
17. In refpect of the Celeftial Circles, that is in refpect of the Zodiack, Fquator, and Horizon, there is a fourfold affection of the Atars. 1. Longitude. 2. Of Altitude, 3. Of Latitude. 4. Of Declixation.
18. The Longitude of a ftar is his diftance from the firlt Eegree or Point of Aries; accounting from Weft to Eaft.
19. The Altitude of a ftar is to be confidered generally or fpecially. Generally confidered
fidered, the Altitude of a far is the height thereof above the Circle of the Horizon.
20. Specially confidered, the Elevation of the Pole ftar above the Horizon, is called the Altitude.
21. The Latitude of a ftar is his Diftance from theEcliptick, that is from the very middle of the Zodiack towards either Pole, whether North or'South.
22. The Declination of a ftar, is his Difrance from the 屏uater, and as he declines from thence either Northward or Southward, fo is his Declination nominated cither North or South.
23. Thus much of there affections of the ftars, which they have in refpect of the Ce^{2} leftial Circles; come we now to thofe which they have in reípect of the fun; ufually called the Poetical rifing and fetting; and this is threefold. The firft of thefe in Latix, is called Ortus Matutinits five Co micus, $^{\text {s }}$. The Morning or Cofmical Rifing. The fecond, Vospertinus five Achronicus, The Evering or Achronical; and the laft, Heliacus vel Solaris, Heliacal or Solary.
24.*The Cofmical or Morning Rifing of a ftar, is whenit Rifeth above the Horizon, together with the fan. And the Cofnical or Morning fetting of a ftar is, when it fetteth at the oppofite part of Heaven; when the fun rifeth.
25. The Achronical, or Evening Rifing of Y 2
a Star, is when it Rifeth on the oppofite part, when the Sun fetteth; And the Achronical Evening fetting of a Star, is when it ferteth at the fame time with the Sun.
26. The Heliacel Rifing of a Star, which you may properly call the Emerfion of it, is when a Starthat was hid by the Sun beams, beginseth to recover it felf ont, and to apyear. And fo likenife, the fecting of fach a Ear, which may be alfo called the Occultation of the fame, is when the Sun by his own proper motion overtaketh any flar, and by the brightnefs of his beams doth make it invifible unto us.

And thus having briefly thewed the chief affections of the Primum Mobile; how the quantity of thefe affections may be conputed by the Doarine of Spherical Triangles, diall be declared in the Problems following-

Proble: 1.

To fund the Surs Greateft Doclination and the Poles Ebevation.

In Fig. 9. $A Z, B N$ reprefents the Meridian, EF the Iqquinoctial, H.R the Zodiack, P the North Pole; O, the South; $A B$, the -Horizon; Z, the Zenith; N, the Nadir ; : C C, a Parallel ; of the Suns Diurnal Motir on at H, or the Suns greatef Declination from the 历quator towards the North Pole;

$$
R Q,
$$

$R Q$ a Parallel of the Suns greatert Declination from the Exquator towards the South Pole. From whence it is apparent, that from A to H, is the Suns greateft Meridian Altitude, from A to Q, his leaft; if therefore you deduct $A \quad O$, the leaft Mer:dian Altitude, from $A H$, the greatel, the Difference will be $H O$, the Suns greateft Declination onboth fides the Equator; and becaure th.e Angles $E \mathrm{D} H$, and $F \mathrm{D} R$, are equal, therefore the Suns greatef Declination towards the South Pole is equal to his greateft Declination towards the North, and confequently; half the Diftance of the Tropicks; that is, $E Q$, or $E H$, is the quantity of the Suns greatet Declination; and then if you deduet the Suns greateft Declination, or the Arch $H E$, from the Suns greateft Meridian Altitude, or the Arch $A H$, the Difference will be $A E$, the height of the $\$$ quator above the Horizon, the Complement whereof to a Quadrant, is the Arch $A O$ equal to $B P$, the height of the Pole.

Example.

The Suns greateft Meridian Altitude, taken Fune the Ele-- 61.99167 venth at Lardor.
 The Suns leant Meridian Al- Tude December the tenth $\mathbf{1 4 . 9 4 1 6 7}$

Their Difference is the diftance $\}$ of the Tropicks. $\longrightarrow \ldots 47.05000$

Half that is the Suns greateft Declination whofe difference from the Suns leaft Meridian Altitude, is

The Elevation of the 压quator? and the Complement thercof to 38.46667 90 is the Elevation of the Pole--- 51.53333

Problem II.

The Suns greatef Declination being given, to find hic Declimation in any point of the Ecliptick.

In Fig. 9. In the Right Angled Spherical Triangle $G L D$, we have given the funs greaz telt Declination $G D L$, and the funs diftance from the next 压quinoctial point $L D$, to find the prefent Declination $G L$, for which the Proportion is Rad.s $L D: s D . s G L$.

Problem II I.

The funs greateff declination and bis diftance from the next Equinotial point given ${ }_{2}$ to find bisk Right Afcenfion.

In Fig. 9. In the Right Spherical Triangle $G D L$, we have given as before the Angle, $G D L$, and the Hypotenule $D L$, to find the the fans Right Afcenfion $D G$; the Proportion is Rad. 1 D $L:: 6 s D, t D G$.

Problem IV.

The Elevation of the Pole, and declination of the fun bring given, to find bis Amplitude.

In Fig. 9. In the Right Angled Spherical Triangle $D T V$, we have given the Complement of the Poles Elevation or Angle $V D T$, and the funs declination $V T$, to find $D T$, the funs Amplitude; for which the Proportion is ; sVDT, Rad.:: sVT \& s T.

Problem V.

The Poles Elevation and funs declination beo ing given, to fird the afcentional difference.

In Fig: 9. In the Right Angled fphexical triangle $D V T$, we have given the Complement of the Poles Elevation, or Angle $V D T$, and funs declination $V \tau$, to find the Afcenfional Difference $D_{V} /$; the Proportion is, t V DT. Rad. $: t V T$ is $D V$.

Problem

Problem V.I.

The right afcexfion, and afcenfional diffcrence being given, to find the Oblique afcenfion and dechination.

In Fig. 9. GV, reprefents the tight AFcenifion; $D K$, the Afcenfronal difference; $G D$, the Oblique Arcenfion, whict is found by deducting the Afcenional difference $D F$, From the Right Afcenfion GV; for if the Declination be North,

If the Declination be South,
$\left.\begin{array}{l}\text { Sub. The Afcenfional diff. to } \\ \text { Add Sand it will give }\end{array}\right\} \begin{aligned} & \text { Aften. } \\ & \text { Defce. }\end{aligned}$

Froblem VII.

To find the tiwo of the suns xifing ard fettixg with the Length of the day and Nisht.

Firft find the Afcenfional difference, as hath been fhewed in the fifth Problem ; which, when the Sun is in the Northern
figns, is to be added to the Semi-diurnal Arch of the Right f_{F} here, which is 90 , but is to be fubtracted from the fame, if he be. in the fouthern figns, and the fam or difference will be the femi-diurnal Arch, which doubled, is the day Arch, whofe Complement to 24, is the night Arch, which Bifected, is the time of the fans rifing.

Problem VIII:

The Poles Elevation, and the funs Declinatin on given, to findthe time when be will be due Enft and Weff.

In Fig. 10. In the Right Angled Spherical Triangle $T P Z$, we have given $P Z$, the Complement of the Poles Elevation, and TP, the Complement of the funs declination, to find the Angle TP Z,for which the Proportion is, Rad. . t P Z :: ct TP . cs TP Z. whofe Complement to a Quadrant TP D, being converted into time, heweth how much it is after fix in the Morning, when the fun will be due Eaft, and before fix at night, wherr he will be due Wett.

Problem IX.

The Poles Elcvation, with the Suns Allitude and Declination given, to find the Suns Azimuth.
In Fig. 10. In the Oblique Angled fpherical Triangle $S P Z$, we have given $S P$ the Complenient of the funs declination, $P Z$ the Complement of the Poles Elevation, and $S Z$ the Complerrent of the funs Altitude, to find the Angle $S Z P$, the funs Azimuth from the North; for which by the eleventh care of Oblique Angled Spherical Triangles, the Proportion is; As the Rectangle of the fines of $S Z$, and $Z P$, is to the fquare of Radius, $f 0$ the Kectangle made of fines of the differences. of thof containing fides and halt frum of three fides given, to the Square of the fine of the half angle inquired.

CHAP. IV.

> Of the Socusciary or Periadical Mation of the Stars.

Having dore with the firt part of Afronamy, the motion of the Primum Mobile, and the affections of the ftars, occafioned by that motion; we are now to fpeak of their

Cefe Englin Itarente.

own Proper or Periodical motion, in which contrary to the motion of the Primunim Alon bile, they are carried from Weft to Eaft.
2. This motion of the fixed ftars is very flow; for they alter their places but little in many Years, but are not immoveable as fome thought; the quantity of their annual motion, according to Tycho Brabe is so feconds, and 37 thirds of a degree, and others fince him do conceive that so feconds only is the quantity of their annual motion, that is moft agreeable unto trath and obfervation.
3. This motion in the Planets is more fwift, and although they never move out of the Zodiack, yet they do move fometimes in one part of Heaven, fometimes in another, fametimes towards the fouth Pole,fometimes towards the North, fometimes near one fixed ftar, fometirwes near another, and fometimes nearer; fometimes farther from one apother alfo, whereas the fixed ftars do atwayskeeptbe fande diftance from one another. 4. The Plants do not move in one Orb, batc every Planct hath a feveral Orb, whereas the infinite number of fixed ftars do all move in one only Sphere or Orb.
3. The Names and Characters of the planets are thefe:

1. Sat irr, whofe matk is h, finifheth his revalution in 29 Years, 174 Days, 4 Hours.
2. Fupiter, whofe mark is ψ,finifheth his Recolution in in Years, 317 Days, is Hours.
3. Mars, whofe mark is δ; finifheth his Revolution in 1 Year, 321 .Days, 23 Hours.
4. The Earth or Sun, marked thus \odot, finifheth his.Courle in 365 Days, 5 Hours, 49 Minutes, 4 feconds, and 21 thirds.
5. The Moon, marked thus D, finifheth her Courfe in 27 Days, 7 Hours, 43 Minutes, and 6 feconds, but returneth not into Conjunctis on with the Sun, under 29 Days, 12 Hours, 144 minutes, and 3 feconds.
6. Vens, marked thus 9 , finifheth her Courfe in 224 Days, 16 Hours, 40^{\prime} and $30^{\prime \prime}$.
7. Mercury, marked thus of, finifteth his Courfe in 87 Days, 23 Hours, 00^{\prime} and $15^{\prime \prime}$.
8. The Civil Year, though it doth not exactly agree, yet hath it fome proportion with the Motions of the fun and Moon in every Nation; Romulus the Founder of Rome, appointed the year at firft to confift of 19 Moons, or Months, and called the firt Marcb, $_{2}$ 2. April, 3. May, 4. June, the reft Qxintilit, Sextilis, September, Oltober, November, December, becaufe they were $5,6,7,8,9$; and 10 Months diftant from March.

Afterwhom, Numa Pompilius added two Months more, and called them fanisary and February, and appointed each Month to contain 29 and 30 Days, whereby the Year did confift of 354 Days, in which time the Moon returneth into Conjunction with the Sun, and this is the quantity of the Xear in Turky
at this day; only in every third Year, they reckon 355 days. The Per \bar{j} ans and asyprians, doalfo count 12 Moons or Months to their Year, but their Months are proportioned to the time of the Suns continuance in every of the 12 figns: In their Year there-: fore, which is folar, there are always .365 days, that is, 11 days more than the Ledian Year.

And the fulian Year, which is the accompt of all Chrifiondom, doth differ from the $0-$ ther only in this, that by reafon of the funs excefs in motion above 365 days, which: is about 5 Hours, 49 Minutes, it hath a day in' tercalated bnce in four Years, and by reafon of this Intercalation, it is more agreeable with the motion of the Sin, the former differing from the Numis Year, ut days and 6 Hours, the which it days, ; fudise Cafar dis Atribated amongit the Months, and the month Quintilis; was by hime ralled $7 n l y$, ac. cordiag to his own name; and Auguftus Cafar called the Month Sextilis, by the name of Auginf, and altered the Pdfition of days in each month to that which we now ufe, in which there are je2 Wrekss and bue odd xay, and this one day fuperndmerarymaketh an alteration in all the reft, fo that the days of the Week, which ofed to be affigned by the Letters of the Alphabet, fall not alike in feveral Years; but sund y this Year, muft fall out upon the next j ears Monday, \&fo forward, A a
fepen years:; and becaufe the fix odd Hours do make a day in four years, every fourth year hath aday added to its accompt, and fuch a year doth conifif of 366 days, which doth accafion the Sunday letter. ftiil to alter t difour times 7 , that is, 28 Years be gone. abcat. : This Revolution is called the Cycle. of the.Sur, taking name from ©; Surday, theLetter whereof it doth appoint for every year, as by the Table may be feen.
\therefore To find which of 28 the prefent is, add' 9 to the Year of Our Lord, becaufe this Gir: cle was fo far gone about at that the time of Chirfits birth, divide the whole by : 28_{j} what remains, is the prefert jear; if nothing remain, the Cgole is out, and that year you muft call thelaft, or 28.

This litercalation of a day placed in $F e-$ brkary; doth cccafion tine letter F sobe twice xepeated in the latter end of that Month; ific. upon the 24 and 25 days, and in fuch a jear St. Matthies dav is to be obferved upon the 25 cf that month, and the very ncxt i unday dcthchange and alter his letter; frem which Leaping or Changing, fuech ay car is calied the Lieap Year, and the-Number of daysin each Month is well exprefled in thefe - Diftichs.
-.
II
EDW:olta.

> Thirty Days bath September, April, June, and November; Fcbruary bath Twenty Eight aloze, All the reft ha: Thirty and One:
> ——But when of Leap Year cometb the time, Then Days bath February Tmenty oir Nine.

That this Accompt is fomewhat toolong, is acknowledged and confell:d by the moit skilful Aftronomers, as for the Number of days in a year, the Emperours Mathematicians were in the right, for it is certain, no Year can confift of more than 365 days, but for the odd Hours, it is as certain that they cannot be fewer than five, nor fo many as fix, fo that the doubt is upon the minates, fixty whereof goeth to the making of an Hour; a fmall matter one would think, and how great in the recefs and confequence we ball fee.

Julius Cafar alotted 365 days, 6 hours, to his Revolution; bat the Sun goeth about in lefs time, that is, (according to the moft exact accompt,) in 365 days, 5 hours, 49 Minutes, and a little more; fo that the Emperours year mult of neceffly breed a diffed rencein fo many Minutes every year, betwixt the year which the Sun it felf defribes in the Zodiack, and that which is reckoned upon in the Calender, which though for a ycar or two may pars infenfibly, yet in the fpace of 134 years it will rife to a whole day
that is, the beginning of the year in the Calender mult be fet one day back. As for Example.
Let the Year begin in the Vernal Iquinox, or Spring, in the Emperours time, that fell out to be the 24 th of March, but nod this year it fell out the roth of March, 13 days backward and fomewhat more ; and Wuif it be let alone, will go back to the firft of March, and firt of February, till Eafter come to be on Chriftmas day, and fo infinitely.

To reform this difference in the accompt, fome of the latter Roman Bifhops earneftly. endeavoured, and the thing was brought to that perfection it now ftandeth, (fo much as it is,) by Gregory the Thirteenth, in the year i 58.2 . his Mathematicians, (whereof Lylim wes the chief) advifed him thus:That canfidering there had been in agitation in the Council of Nice, fomewhat concerned in this matter upon the motion of the Que: ition about the Celebration of Eafter ; and that the Fathers of that Affembly, after due diliberation with the Aftronomers of that time; had fixed the Vernal Equinox ; at the $21 i h$ of Maych, and confidering allo, that Ence that time a difference of 10 whole days had been paft over in the Calender, that is, that the Vernal Equinox or Spring; which began upon the 2 itb of March, had provented fo mach as to begin in Orggorics
days, at the ioth of the fame, 10 days difference; or thereabout ; they advifed, that io days fhould be cut off from the Calender, which was dome; and the 10 days taken out of OClober, in the Year 1582, as being the Month of that Year in which the Pope was born, fo that when they came to the 5 th of the Month, they reckoned the 15 th, and fo the 不quinox was come up to its place again, and happened upon the 2 ith of March, as at the Council of Nice. But that Lylims fhould bring back the beginning of the year to the time of the Nicene Council, and no farther is to be marvelled at; he fhould have brought it back to the Emperours owh time, where the miitake was firf entred; and inftead of 10, cut off 13 days; however this is the reafon why thefe two Calenders differ the face of 30 dars one from another.

And thus. I have given you an accompt of the year as it now ftands with us in England, and with the reft of the Chriftian World; in refpeet of the Sun-; fome other particulars there are with us and them, that do depeond upon the motion of the moon, for the bettex undyftandigg of them, I will give you a brief accompt of her Revolution.

The Solar year confifing, as hath been faid, of in days more than the Lunar year ; thofe in days called the Epact, are therefore added to the Lunar Year, to made it e-
qual with the Solar, by the addition of which accefs, in every thre years there is gotten a number more than 30 , but becaufe the Moon between change and change toth never pals 30 days, the Epact cannot exceed that number, and the time in which the Morn is fupo pofed to make her feveral Motions, and fo return to the place where he firft began, is a circle or Revolution of 19 years, firft fourd out by Meton, an Atbenian, wholived about 439 years beforeCbriff, this Cycle is therefore called Cyclus Decennovennalis, and from the Antor Anwus Metonicus, from whofe Athenians, the Egyptians may feem to have receiv'd it, as the Romuns from them, in letters of Gold, from whence (if not from the more precious ufe of it) it attained to be called, as yet ftill it is, the Numeras Aureus, or Golden Number: It is made Chriftian, by the Fathers of the Nicene Council, as being altogetherneceffary to the finding out of the Neomenea Pafchalis, upon which the Feaft of Eafter and all the reft of the moveable Feafts depend:It felf is found by adding a llaite to the year of our Lord, and dividing the whole by 19 , theRmainder fhall be the Cycle of the Moon, or if nothing remain, thre Cycle is out, that is, 19 .

And the Epact is found by Multiplying the golden Numberby 1 , and dividing the Productby 30 , what remains is the Epait; but to favethis trouble pf Calculation, you have it fet down to your hand in the table' beforétheca-

[^0]lender, the pie whereof as of the Golden Nuniber is to find the Change of the Moon, for the Ancient Bhilofophers fuppofing the Moon to make a perfect Revolut iox in 19 years, did Calculate the feveral Changings of the. Moan that happenedinearh Month for that time, and placed the golden numter for each year, right againit the day of the Month on which tre Moon changed, that fo having found the golden number, they might thereby prefently know on what day of the month the Moon did change, in any Month of the year forver, as alfo the time, when the Fedf of Eafter was to be obferved, according to the Canon made at a General Council' held ; at Nice, in the year of our Lord, 322, inwhich it is commanded that Eafter फhould be Celebra: ted upon the next Sunday fullowing the firf Full Moon after the Vernal Equinox, which then was upon the 2 ith day of March, and according to this rute is this Feaftebferved with us at this day, and not according to the truc Mo;tion of the Moon, or precife time of the Vernal Fequinox, which now is about the 1 oth of Maich; This ofe of the Golden Nunber is well exprefled in thefe Diftichs.

In March after tbe for $A C$,
Look the Prime where e're it be;
The tkird Sunday after Eafter day hall be, And if the Prime on the Sunday $b e$, Then recken that for one of the three,

To find the New Moons by the Epact, do thus, To theEpaCt for the year given add the number of the months from March including both Months, and the days of that Month pait, the Sum of thefe three Numbers fhall give you the age of the Moon, if they exceed not 30 , if more than 30 , caft away 30 ,and the Remainder Phall be the Age as before.

Examplo.

I would know the Age of the Moon on the Fifteenth day of Auguff, 1672. The Epact is it, and the Months from March to -Angustiart'6, and 15 the day of the Month, all which puit together, do make 32 , from whence take 30 , and there refts 2 , the Age of the Moon that day.

And to know the day of the Change, do this's' To the Epait add all the months from - March, and if they joyned together; come not to 90, look what they lack of 30 , and at fo many days of the month the moon changeth : lf they be above 30 , and the month you defire have 31 days, then Subtract 30 ; but if 30 days, then subtract 29 , and that reft take from 30 , then look what remaints, and at fo many lays of the month the moon changeth, by eithcr of thefe vays the time of the new moors may indeed be gueft at, but not exactly found: How that may be done, is hew d in the làrger Treatifes of this subjedt; this we deem fufficient for our aremp purpofe.
A lable, Jhewing the Cycle of theSuns, Dominicad Letter, Golden Number, and the Epact.

144. Cbe Englih "qcauimp:

	fuly.	Anguft.	September.
1.	198	$\overline{8 c}$ Lammps.	$16 f$
2	84	16 d \cdot.	$5 g$
3	6	50	-
4	$16+c$	f	136
5	sd.	13 g	2 c
6	e	2 a	d
7	$13 f$	6	10°
8	2 g	10 c	$18 f$
9		d	75
10	106	$18 e^{\prime}$	
11	c	$7 f$	156
12	$18 d$	g	$4 c$
13	$7{ }^{\text {e }}$	159	d
14		4	
15	15\%		1
16	4	12d	
17	b		$9 a$
18	$12 c$	f	b
19	$1 d$	9 f	17 c
20	\boldsymbol{e} :	,	$6 d$
$\overline{2 i}$	$9 f$	176	
22	g	$6 c$	$14 f$.
23	17.		$3 g$
$2 \cdot 4$	6	$14 \text { eS. Bar- }$	3
25	c Jam. Ap.	3 f -tholo.	II 6
26	139		
27	36	119	d
28	f	b	8 e
29	$11 . g$	19 c	f S:
30	a	8 d	g

The Englifh acabemp.

Cc

THE ENGLISH

ACADEMY:

The SIXTH PART.

Of RHETORICK:

CHAP. h

Of ohe Definition and Parts of , RHETORICK.

RHETORICK, isthe Art or faculty of Eloquent and delightful Speas king.
The Parts of Rhetorick are Five; prountion, Difoftion, Elocution, Memory, and Pranownciation.

- In Invension, we are to confider three things:

1. What we are to Invent. 2. By what Arguments we may confirm the Matter Ine vented. 3. From what Topicks or genemal
ral Heads thofe Arguments may be raifed.
And firft, the thing or matter which we are toinvent, is the fcope and parpofe of the intended Oration: I hat is, we muft propound fome certain Propofitionto which we mean to direlt our Speech; and of thofe feveral Propofitions which may be raifed from the fubject propounded, we hould fill make choice of that which is moit agreeable to the Senterse ghatr

Secondly, When we have refolved upon 2 Propalition, we areto bethink oup fetwer of fome Arguments or probable Reafons, by which that Propofition may be confirmed. \cdot

Thirdy ye We are to confider the feveral Topicks or common places from whence thefe probable Argamens my be invented and raifed, and thefe are of two forts; $\quad \mathrm{In}$ trinfecal and Extminfocal; thofe that are called Intrinfofed, which are comprifed in the matter which is propounded, and the Tepicks. or Heads, from whence fach Arguments may be invented, are thefe following.

1. Definition. 2. Divifion. 3. Notation. 4. Cowjugation. 5. Genms. 6. Species. 7. Similisudie. S. Diffimilitude. 2. Cawtrariess io. Oppofites. is. Comparifon. in, Canfes. 13. Effctis. 14. Adjuncti. 15. Antacedents. 16. Confequerts. All other Tapicks, from whence Intrinfecal or Artificial Arguments may be raifed, are contained in thefe. or hay be derived from them.
2. Definition.

The Englifa Mabetid.

1. Definisian, is s Speboh expleining or declaring what a thing is $;$ The parts whetron of, according to Logiciansare twe; ; T.The Genis's ot general name agreeing with the thing defined, and with Severahocher thingo befides. 2. The differeme or : paitioutar name, which doth only agree with that which is defined:

For Examphe.

Man is a Living Creatare, endoed with Rearon. In which the Genes is livisg Crext ture; and this agrem with other Creatures befides Man; the Difference, is sadurd with Reafory and this is proper to dan only. Rut fuch Defritions as thefe, are felidom ufed he Oretorsy betuach rather asi ape cale led Defcriptions, more properly than Definitions; as when a thing is defcribed by its pates, ox:by its affects, or by the caufes by which effects are prodics ${ }^{\text {, and fuch like. }}$
2. Divifore, is the diftribution of the matter propounded into its parts ; Thus the Life of Man may be divided into Infancy, Child-hood, Youth 2 Middle-age, Old-age.
3. Netreiony or Euyumarie, io the Inter-
 Seqiors or Cud Men

5. A Gemus, is that which comprehends feveral things under it; which are really different from one another.
б. A Species, is that which may with other things be referred to one common Genus : And thus this word $A r t$, is a genus, in refpect of, the feven Liberal Sciences; as G Gammar ; Rhetorick, $\& C$. and thefe-Sciences Grammar, Rbetorick, \&c. are the Forms and Sfecies which are contaiged under this Genus or general term, Art.
7. Similitude, is the comparing of two ormore ohings together, which are in themfelves divers, but do agree in fome particular.

For Example.

A foadow and glory, are in themfelves very different things; bat yet they agree in this, that the foadoro doth accompany the body, and glory, virtue.
8. Diffimititude, is the difagreeing of two or more things in fome particular.
9. Centraries, are fuch things which cannot bothatthe fame time, agree with one \& the fame thing : Thus no man can be faid to be wife in that thing in which he is a Fool.
10. Oppofises, are fuch things as can ne- . ver agree together, as pras h and friendfoip,
11. Comparifon, is the coasparing of one thing

The Englifh Fcaveme:
thing with mother; Thisiseither equal or unequal.

Equal Comparifon is, wher two equal things are compared together; as thes; Ho bath deceived sher, therefore be will deveive me aljo.

Unequal Compreifon, is two ways, firft, when we argue from the greater to the lef: :As God fparcalnot the Angels thoat fruened, tono then fhall He Spare. Man? i:

Secondly, when we argue from the lefs to the greater; As; He wilt not let enc fin go nom punifhed; much mere sill be tberefore puni in a multitude of fins.
12. Caufes, are fockthings by which any thing is in any fort produced; there ane Nour forts of Campes; Efficiem, Material, Formal, and Fimal..

The Eficient canfe, is that which maketo a thing: Thus the Sun eaufoth or maketh the day.

The Matcrial cinufe, is that of which a thing is made, as Nowey, of Gold and Sitvir, \&c.

The Formal caufo, is that by which the thing is what it is, or that by which it is diftnguifed from other things; thus a Ship and a T imber-houfe todiffer in the form, or divers difpofing of the parts.

The Final cakfe, is that-for which a thing is made.
13. Effats, are fach things as are propoinded by their caufes.
14. Adjumtts.
 him tremble, therefore the is fenfible. 16. Eonfoquents, are fuch things which do neceffar.y follow after the thing or matter as he that is thruß through the heart, mula needs die; thefe are the intrinfecal or Artificial Topicks, from whence Arguments may. be raifed on any Theme or matter propouns. ded in this manner.

Every Theme or Propofition doth confirt ofthree parts; a Subjcti, a Predicate, and a. Copula.

That is called the Subject, of which we. fpeak; The Predicate, is thas which is fpoKen of the Subject; and the Copula, is fome Verb, which joyns the Subjed with the Predicate, as in this Propofition; Claudius laid Inares for Milo: Clandius is the Subject,becaufe it is of him that we are to fpeak. Snares for Milo, is the Predicate ; becaufe that is the thing which is faid of Clandius. And the Verb laid, is the Copula, which. joyns the Subject with the Predicate. Now then if you will find out Arguments on this. Propolition, take the Subject, and go through every Topick: Firft go to Definition, and ask what it is r what is the nature of it and how it is diftinguifhed from other chings? then go to Divifion, and fee into how many parts the Subject may be divided; and 10 Eorward from Topick to Topick. Aod fill obferve to yourfelf every Argument, which doth by this means arife from the subject, whole Propofition, then the Subject and Prey dicate a part by themfelves, you may in that manner run through all the heads of Invens tión; but fay not too long upon any one, for if matter offer not it felf in one head, go to another, for every head perhaps may not afford matter, at leaft not fuch ass is apt and fit. But if you would know whether your. Argurients or matter be drawn from the Subject, or from the Predicate, put it into the form of a Syllogifm, and if the major be molt certain, you may conclade, that the Argument is drawn from the predicate; Out tf the minor be moft certain, it if then drawn from the Subject. -
Yvhen you have found the Arguments which prove the propofition, you mult redace shera intp the form of a Sylogifm, whish toth confif of three propofitions: the fint whereof is colled the opejor the fe
 be Inforerch.

Eor Examzty.

In the former Propofilou, Olpudips laid Fhare for Milo; the matter of Suheff of Ithe

Difcourfe may be drawn from the Predicate the fnares laid.fer Milo; which being a treacherousthing, every one may naturally infer, that it doth deferve punifhment.
Now then joyn this Infereace with thePredicate of your Propofition; faying, He that layeth fravice deferveto punifboment, and this is your Major; then take the Subject of your Propolition, and joyn that with the Predia cate, and fay, Claudius layeth fnares, and that is your Minor: From both which; this conclufion male noeds follow, Therrofore Claudtus de fervath puni homens.
\because i.7. Hithertowe have fpoken of Artificial Aeguments, Inartificial are either Teftimonies or Exanaples.

Teftimunies are either Divine or Human, a Divine Fefimony is that which hath God for its Apthor fuch arethe Orectes of of, and the predictions of his Propbets. : Humane Teftimony, is either Common or Draper.

Oxmpen Teftimony, is that which depords eichereupon fome Law, Cuftom, or Opinion and sayings of wife Men.

Rroper Teftimony, is that which is pecutiar to. fome particular Caufes. \therefore Example; is an Inartificial Atgument, by which the truth of a thing is confirmed and illuftrated.

DIfoofition, is the ordenly placing of thofe things which are invented: It is two-fold.

Firft, Natural, in which things are difcourfed in that order in which they were. done, or in which according to Natore, they thould be done; as if you were to commond a Perfon, you fhould tegin with his Childhood, next his Youth, and fo to the ether degres of his Age.

The fecond way is Artifisial, which doth . cither for delight or profit diverly mingle and confound the matter, putting that. in the end, which fhowld be in the beginniags and the beginning in the end, that fo he may both delight the Auditors, and hold them in fufpenfe; which in an unexpected event doth not a little pleafe and delight the Hearers.

The Orator then having refolved of his Propofition, mult firf confider of whit nature it is, whetherfingle, or copfifting of feveral parts; and which of the parts hould be filf handled, which next.

Secondly, he muft choofe fome few of the bef Arguments he hathinrented, and ylace
fome folid Argument in the beginning, thofe that are lefs forcible in the midft, peferving ftill the beft and moft convincing for the conclufion; becaufe theAuditor at the firft being greedy of knowing, mult be preporfeffed and convinced; but in the end he mult be ftrongly confirmed and forced.

And the molt perfwafive Arguments are thofe which proceed from the Definition, Diftribution, Genus, Caufes, and Effects of the thing difcourfed of, for thefe explain the nature thereof; and lefs forcible Arguments are fuch as are collected from fome trivial Adjuncts and Conjectures.

Thirdly, he muift Logically difpofe of there Reafons and Arguments; Firft, into Syllogifins, and then confider how to enlarge them in an Oratorical manner.
Fourthly, he mult confider into what parts his Oration fhould be divided, and the parts of an Oration are ufually reckoned to be thefe five,
> 1. Exordium. : 3. Narration.
> 2. Propofition. 4. Confirmation.
> 5. Peroration, or Conclufion.

As for Confutation, it is comprifed in Confirmation: Butall thefe parts are not always receflary ; for the ingenious Orator, may as he hall fee it convenient, femetimes opit the Narration, fometimes the ExordiEe in which we have named them. 1. The Exordium. 2. The Prapofition. 3. The * Varration, if it be not thought fit to omit it. 4. The Confirmation; and Laftly, The Pco . rration.

An Exordium, is as it were the door of the Oration, in which the Orator doth prepare the minds of the Auditor for that which is to follow: And this is commonly done by one of thefe three ways; By befpeaking their Favour ; by making them Docible; or by begging their Attention. The Favour of the Auditors is befpoke either from the perfon of the Orator, from the perfons of the Auditors, from the perfons of the Adverfarics, or from the fubject matter of the Difcourfe. The Orator may befpeak the Favour of the Auditors, in refpect of himfelf, if his gefture and deportment be 'faitable unto theirs that are his Auditors, and exprefs himelf modeftly. And in refpect of the Auditors, if he fhew how well they have deferved of the Common-wealth, of him, and other men. And in refpect of the Adverfaries, if he mociefly thew wherein
they are faulty, and render them to the Au ditors inexcufable. Andlaftly, in refpeet of the matter in hand, if he fay, that it is fome excellent, neceflary, and profitable thing.

Secondly, the Orator may be faid to make the Auditors Docible, if he clearly explain the thing of which he is to fpeak, and how he parpofeth to enlarge upon it.

Thirdly, the Attention will be quickened, if he faith, that he intends to fpeak of fome great and wonderfol thing, and fomething that is delightful, necellaty, and very much concerns his Auditors, 俞c.

The fecond part of an Oration is the Propofition; and the Propofition is that part of the Oration, in which the Orator doth briefly deliver the fam of the whole Matter, of which he intends to fpeak, and befpeaks the Hearers Attention, if need be. Sometimes it doth immediately follow the Exerdimm; fometimes it follows the Narration; In what place foever it be put, it mulf be fhort and clear, and fit for Confirmation.

The third part of an Oration is Narratio. on, by which a relation is made of the matter or thing done. And this is either a diftinct part of the Oration, and then for the moft part it doth inmodiately follow the. Exordium, that the Propofition with the Con-. firmation, which is to be done in fuch Orations which aldume the explaination of

$$
\text { Ee } 2 \text {... the }
$$

the thing done to prove the matter in hand For Example.
If you were to prove that fome Valiant perfon had been a Souldier in fome Warr ; it is ncceflary that you foould declare what the particular Actions were in which he thewed his Valour.

But now in that Narsation, which is made a diftinct part of the Oration; the thing done muft be briefly ard fimply declared without any exaggregation: And in fuch a Narration as makes way for Couplimation, the things dore may be illuftrated with great neatnefs of Language, with Sentences and Figures, and fome Difcourfes may be made concerning the worthinefs of the action, with fome amplification from Si milituces and Comparifons.

The fourth partof an Oration, is Corfirmation : and Confir mation is as it were the very Heart and Soul by which an Oration may be chiefly faid to Live: Or it is the chief fart of an Oration in which the Arguments are produced, by which we would prove our Propofition, and refute or anfiwer the contrary opinion of our Adverfary, if sieed require: What is neceffary in this behalf, may be collected from what hath been already faid. Seeing that Confirmation doth confif of the Arguments that are invented and the right difpofition of them, both which have been fully enough declared before.

Ctye Englih gcademp.

Confutation, is a part or kind of Confirmation, in which we Anfwer all Objections; it doth either precede or follow Confirmation, or may be here or there ufed in all the parts of the Oration.

And thefe objedions may be eithcr all Answered together, or thofe firft which are firft made, and then the latter; or thofe firft which are moft material, and the reft may fall of themfelves; or the weakeft firlt, that they being avoided, the ftrongeft Arguments may be fomewhat weak'red. And the manner of doing this, is by fhewing, that the Adverfaries Allegation is either falfe, impoffible, uncertain, or impercinent, and the like.

Pororation, or Conclufion, is the laft part of an Oration, in which the Orator fhould very much endeavour to fet an edge in the minds of his Auditors, and incline them to be of his fide; and here he fhould therefore ufe fuch Figures, as are moft proper to move the Affections: It doth chiefly confift of two parts, Enumeration, and Amplification.

- Enameration is required, that the chief Arguments more largely opened in the former difcourfe may be clearly repeated in a new form of words.

Amplification, defires that this repetition may be made, by fome ferious expreflions, a: dorned with Sentences and Figures.

$$
\text { Ee } 3 \text { CHAP. }
$$

162 Ube Englif grabeme.

CHAP, III

ELocution, or the garnifhing of Speech, is an Art by which the Speech is beautified with the Elegancy of Words and Sentences.

And this is performed two ways; by the fine manners of Words, called a Tr rope; or by the fine frame of speech, called a sigure.
A Trope is fuch an Elocution or manner of Speech, as doth change the fignification of a word into a different fignification from the natural.

In a Trope two things are to be confideted.

1. The Affections. 2. The Kirds.

$$
\begin{aligned}
& \text { The Affections of a }\left\{\begin{array}{l}
\text { Catachrrefis. } \\
\text { Hyperbole. }
\end{array}\right. \\
& \text { Yrope are four, } \\
& \text { Muttalepfis. } \\
& \text { Allgoria. }
\end{aligned}
$$

Catachrefis, is a harth and unpleafant change of a Word; as namely, when one word or name is put to another, not by any proper relation, but by a kind of force. He tbreatens me a good turn.

Hyperbole, is a very high relation of a thing, or a more bold excefs of a Trope, which dothexceed belief, either by Augmentation
tation or by Diminution. Note that though an Hyperbole doth vary from the truth, yet doth it not deceive us through Fiction, or fuch variation.

An Hyperbale is two-fold; Auxefis or Meiofis.

An Auxefis is, when for Argumentation fake or Amplification, we interpofe a more vehement expreflion, in his proper place ; as when we fay, magnificent for liberal.

A Mciofis, or a Tapinofis, is when for extenuation fake, we ufe a milder or more favourable expreflion, than the matter requio reth; as when we fay a flatterer io a courteows and an affable per fon.

A Matalepfis, is that which containeth ma: ny Tropes in one expreffion; as, when we by an improper Speech, fignifie, firft; that which is improper, and by that improper Speech perhaps another, and fo forward, till we come to that which is proper, making way for Tranfition, by interpofing a mean degree; as All the City was moved. Mat. 21 . 10. where the City is put for ferufalem, by a Symechdoche Geveris : and Formfalem for its Inhabitants, by a Metonymy of the Subject.
An Allegory, is the continuation of a Trope as where many Tropes of the fame kind are joyned together; as, Put an the whole Arwerr of God, Ephcfians 6. 1 I.

In an Allegory, oblerve to end with the fame ki:d of Trope with which you begin, or

The feveral kinds of $T_{\text {ropes }}$ are thefe four:

1. A Metonomy. 3. A Metupher: and
-2. An Irany.
2. A Synechdoche.

A Met momy, is a Trope of the Caufe to the Effect, of the Subject to the Adjunct: and the contrary, of the Effect to the Caufe, or of the Adjunct to the Subject.

There are four kinds of Caufes.

1. The Efficient Caufe, by which a thing is.
2. The Material Caufe, of which a thing is made.
3. The Forwal Caufe, by which a thing is what it is.
4. The Final Canfe, for which a thing is; of which the two firftonly belong to our prefent purpofe.

A Meronymy of the Caufe, is of the Efficient, or of the Matter.

A Metonymy of the Efficient Caufe, is when the Author or Inventer of any thing is put for thofe things which he hath invented; as Virgil, for the Poem or Works compoled by Virgil.

A Metonymy of the Material Caufe, is when the name of the Matter is put for the Effect; as Brafs, for lirals Money.

A Metonymy of the Effect, is when the Ef: ficient Caule is fgnified by the Effect; $2 s_{;}$ Pa'e Death, which make:b Pale. proper name of any subject is made to tignifie the Adjunct ; as, the C'up, for the Drink. in the Cup.

A Metonymy of the Adjunct, is when the Adjant is put for the. Subject; as Gem. 3 r . 53. Jacob spear by the fear of his Fatber If aac, i. e. by God, whom Ifaac feared. ,

An Irony, is a Trope from one oppofite to another, or in which we fpeak by contraries.
oppofites ; are either unlike or contrary ; all things of different natures are faid to be unlike; as a Man, a Stone; and all things of contrary natures are faid to be contrary to one another ; as light and darkne/s.

An Irony of a thing unlike, is when any thing is fpoken of one perfon, and understood of another.

An lrony from the contrary, is when one costrary is fignified by another; as O thos beff dome erty ; meaning that he had doep very in.

Paralepfis, is a kind of Irony, by which we feem to pafs by, or tate no notice of fuch things which yot we ftrictly obferve and rea member.

Apophafis, is a kind of Jrony, by which we deny to fay or do what yet we fpeak with greatelt earneftnefs, and do with all out might.
A Metaphor, is a Trope, by which we exprefs
expre's our felves by a word, which is of the like fignification with that we mean; as, the King is the Head of the Common-wealith.

Synecdoche, is a Trope, by which a part is put for the whole, or the whole for a part. A Part, is either a Member or Species.
A Symecdoche of a Membsr, when by a Member the whole is fignified; as, the Roof for the Houfe.

A Syrie doche of the Species, is when the Species is put for the Genus; as, Crafus, for a Ricbman.

The whole is either an Integer or Gemus. A Synecdoche of an Intcgtr, is when an Inzeger is put for a Member; as, His Army was fogreat, that it drank the Rivers diry; meaning a great part of the Water in the River. A Synecdoche of the Genus is, when the general is put for the fpecial ; as, Preach the cofpel to every Creature, meaning Mankird only, and not to every Creature.

* Hitherto of Tropes, the firft kird of elocution, the fecond kind of Elocution by Figure.

CHAP: IV.

Of a Figure.

AFiguro, is a kind of Elocution, by which the form of a Speech is changed from its right and plain ufe.

AFigure, is cither of a Word, or of 2 Sentence.

A Figure of a Word, is that by which an Oration or Speech is compofed of words aptly and fweetly fuitable to one another, and this confits in the Dimenfion or Repetition of Sounds or VVords.

A Figure, in the Dimenfion of Sounds, is the fweet number of Sounds in a Sentence.

Number, is either Poetical or Qratorical.
A Pcetical Number, is that which is confined to a perpetual obfervation of certain Spaces.

- A Number Peetical, is either Rhyme or Meter.

Rhyme is a Poctical Number, containing a certain number of Feet, without any regard to the quantity of the Syllables; whether long or fhort, $A \mathrm{~s}$,

- Daie to bo true; nothing can need a lys: A ault that needs it moft, grows two thereby. A $M_{\text {ter }}$, is a Pcetical Number; confifting
of certain Feet, of which the laft Foot hath the laft Syllable indifferent or common; that is, long or hort.

Oratorisal Number doth indeed confift of Feet, but not of any certain number of Feet, but of as many or as few as the Orator pleafeth.

The Figure of a word in refpeat of the repetition thereof, is either of like or unlike sounds.

- A Figure of a word in the repitition of the likeSound; is either with, or withoutIntermiflion.

Reperition of the like Sound without inter. miftion, is cither an Epizeuxis, or an Anam diplofis.

An Epizenxis, is when a like Sound is re: peated in the fame Sentence without Intermiffion; as, a fwords a fword is fharpened.

An Axadiplofis, is when a like found without Intermiffion is repeated in divers fantences, i.e. when it ends ope and begins another ; $\mathbf{a s}_{2}$

If then, why I take not my leave, for ad; Ask, ber again, why foc did not mask?

Repetition of like found with intermiffion in the fame place, is either an Arapbera or Epiffropbe.

An Anaphore, is when adike found is repeated
peated in the beginning of Sentences; as,
By art of Sails and Oars, Seas are divided:
By art the Chariot runs,by art Loves gnided.
An Epiftrophe, is when a like found is re-' peated, in the clofe of fentences; as, Are they Hebrews? fa am 1: Are they Ifraelites? So am I: Are they of the feed of Abraham? So am I.

Repetition of like found with intermifion in divers parts or places, is either an Epanalepfis, or an Epanados.

An Epanalepfis, is when a like found is repeated in the beginuing and ending of the fame Sentence; as, In forrow was 1 born, and I muft dye in forrow.

An Epanados, is when the like found is in the beginning and ending of divers fentences, an Anadiplofis coming between; as Parthenia defired above all things to bave Argalus; Argalus feared nothing but to miiß Parj thenia.

A Figure of a Word made by the repetition of founds fomewhat unlike, is either Pa ronomarfia, or Polyptoton.

Paronomafia, is when a Word being changed in a Letter or Syllable, it is alfo changed in fenfe and fignifi ation; as, Thougb you advife rat to repent, I bave not Grace to follow your idvise.

A Folyptoton, is when words of the fame
ginal are reiterated, but with fome variation; as, Deciving, and being Deceived.

A Figure in reference to a fentence, is a Figure which affecteth the whole fentence with fome motion of the Mind, either in ablolute reafoning, or in reafoning Dia-logue-w:fe.

Logifnus, or abfolute Reafoning, is when a sentence is compoofd withcut any talking with other fuppofed; this is either E_{c} phicnefis, a recalling of ones felf, Apofrophe, or Profotopeia.

Ecplonefis, is a Figure in reafoning, by way of Exclamation, by an Adverb expreffed, or underftocd; as, O wretchedmanitbat $1 / m$!

Recalling of ones felf, is when fomething is called back; and it is as it nere a Diminution of the over-haftinefs or heat of speech; and this is either Epanortbofis, or Apofiopefis.

An Eparnertbofis, is when fomething precedeing is calted back, by correcting it; as, I b. Wh oxe only Taung Man to my fon; ab! what bave I faid! I had! yea I had! It is now uncertain whether I bave or not.

An Apoficpefis, is when the clofe of a fenterce begun is fopped, by keeping in a part, which yet is underftood; as, You Rogne if I Live ?

An Apofirophe, is when a fpecch is direSted to another, than was by the fpeech it felf
felf at firt intended; as, God knows I lye not.
A Profopopacia, is when in our Oration, we fuppofe another perfon to be fpeaking; as, Jom. 24. 27. Behoild tbis ghall be a nitnefs anto us; for it batb beard all the Words of the Lord, which be hatb fooken unto us.

A Figure, in reafoning Dialogae wife, is whin a fentence is compored in form of a Conference; this confifteth in Queftion and Anfwer, in Confenting or diffenting Dialogifm.

A Figure of confenting Dialogifm, Is when ones Anfwer doth admit of the Objection exprefled or underftood; yet fo, as that from thence the inconfequence of the Objection may be fhewed if need be.

Diffenting Dialogifm, is when ones anfwer doth impugnor crofs the O bjection.

And thas much concerning Elocution, as for Memory and Pronounciation, which are the other two parts of Rbetorick, I purpofely omit them, as being natural Endowments, which may be better improved by conftant practice,than by any Precepts which can be given.

FIX1S.

THE ENGLISH

ACADEMY:

The SEVENTH PART.

Of the Art of LOGIC K.

CHAP. I. Of Simple Themes.

FOgick, is an Art which conduateth the Mind in the knowledge of Things. 2. The Parts of Logick are two, Thematical and Organical.
3. The Thematical part is that, which Treateth of Themes, with their various affections, and fecond Notions, as of the matter of which Logical Inftruments are compoled.
4. The Organical part, is that which treateth of thefe Inftruments, and their Compofition.
5. A Thome, is any thiag propounded to the

174 Cbe Englifh atavent.

the underftanding, that it may be known.
6. ATbeme, is either fimple or compound.
7. A Simple Thome, is one Voice, fignifiing one thing as, a Max, a Horfe.
8. A Compound Tbeme, is a Theme made of feverai fimple themes rightly Joyned together ; fignifying many or feveral things; fuch are all Orations.
9. A Simple Theme or Voice, is,

1. Concrete, which expreffeth a^{-}thing Concretely or Joyntly ; as, Learned.
2. Abfract, which noteth fomething. AbAtracted from all others; as, Learning. 10. An Abftract Voice, or fimple theme, is Singular or Univerfal.
3. A fingular theme, is that which in its own nature can be fpoken of no more than one, and is called an Individual.
4. Individuals are of two forts.
5. Such as are Certain and Determinate; 2s, this man, Panl, Alexander, the Apofile of the Gentiles, \&c.
6. Such as are uncertain and indeterminate, as fome man.
7. An Uxiver fal fimple Theme, otherwife called a Predicable, is that which may be fpoken of many; as, a Body; and this is either of the firft or fecond Intention.
8. A fimple. Theme of the firft intention, is that which expreffeth the thing it felf; as, Gold, Stone, \&c. fo called, becaufe they are the names by which the things themfelves aie firft made known.
is. Afimple Theme of the fecond Intention, is that which doth not exprefs the things it felf, but certain affections agreeing to the thing, and fuch are all Words of Art ; as, a Noun, a Metaplor, éc.
i6. An Vniverfal fimple Theme, may be - fpoken of many, two ways.
I. In Quid ? or by declaring what a thing is; and thus it is fpoken of fuch as do differ in the Jpecies, and is called Genus fas, a !iving Creature, colour, orc. or elfe of fuch as dodiffer in number only, and is called /pecies; as, a Man.
9. In Quale, or by declaring what a kind of thing it is, of which it is fpoken ; \& that Efrentially or Accidentally, Effentially, and then it is called Difference, the which is,
10. Divifive, by which a Genus is divided into its feveral \int pecies, as by rational and irrational a Living Creature is divided into a Man or a Beaft.
11. Conftitution, which doth Effentially conftitute fome $/$ Fecies, and this is,
12. Generical, which doth conftitute fome remote \int pecies, but not thenext, for the next is the Genus, thus fenfibility in respect of Man, is a generical difference, conitituting firft a living Creature, and then a man. And this is slways fpoken of many differing in /pecies, or number.
2.Specifical, which doth conftitute the neareft Species; as, rationalibility doth confituиe mañ.
13. Accidentally, and that either of necef-
fity, and thenit is called a proper Accident, which is cenvertable with its Species, perpetally inherent in every of them, and in no other, as the vifible faculty in a Man.

Or not of neceflity, and then it is called a common or fimple Accident, not convertible with its Species; as white.
17. All fimple Themes, may be redaced to ten ranks or orders, called Predicaments, of which Tome are more principal, fome lefs.
18. The more principal Predicaments are the firt fix, the lefs principal, are the other four.
19. The Predicamental Ranks or Ordirs, are of two Corts, the one of Subftanse, and the other of Actidents.
20. Of Subftance, there is only one, and it is called by that name Subfance, which is a thing fubfifting of it felf, and it is cither firft or fecond.

2 I . The firft fubftance, is a Sipgular fubftance, or a fubftance that cannot be predicated of its fubject; as, Alexander.
22. The fecond Sabfance is an Univerfal fubftance, or a fubltance which may be predicated of its fubject; as, a Man, a Horfe. The firtt fublance is chiefly and properly a fubstance, and among the fecond fubitances,every one is by fo much more a fabltance, by how much it is nearer to the firft:
23. The Predicumental Ranks or Orders of Accidents, are of two forts.

1. Aif! $!u t e$, as the Predicaments of quan-

tity, Quality, Attion, and Paffion.

2. Relative, as the Predicament of Relation.
3. Quantity, is an abiolate accident, by which a thing is faid to be great in bulk or number.
4. Quality, is an abiolute Accident, by which it is fimply and determinately declared what kind of thing, that fubject is, of which it is the Quality.
5. AEtion, is an Accident, by which a fubject is faid to be doing.
6. Pafion, is an Accident, by which the fubjen is called Patient; or it is the reception of ALtion.
7. Relation, is a refpective accident, by which one thing is predicated of another, cr may by fome way be referred unto another.
8. The lefs principal Predicaments are thefe four, When, Where, Sciruation, and Habit.
9. The Predicament $W_{\text {ren, }}$ is an accident, by which finite things are faid to be in time, paft, prefent, or to come.
10. The Predicament Where, is an accident, by which things finite, are faid to be in fonle place.
11. The Predicament of Scituation, is a certain Ordination, or placing of parts in Generation.
12. The Predicament of Habit, is an accident, by which fome garment or fomething like a Garment, is put about, hanged upon, or fome way or other joyned to a Body.

CHAP. II.

Of Compounded Themes.

HItherto of Simple Themes : Compoxyded Themes, or fuch as are made of feveral Simple Themes are next to be confidered; otherwife called Enurciations, or Propofitions. 2. An Enunciation,orPropofition, is an Indicative, Congruent and perfect Oration, fignifying true or falfe without any Ambiguity.
3. The parts of a Propofition are $t \mathrm{WO}$, the parts Signing or Signed.
4. The parts Signing are fimple terms, whofe parts can fignifie nothing, being feparatcd from the whole, or no fuch thing as they did fignifie being joyned all together.
5. Thefe fimple terms are of two forts, Cat egorematical, or Syncategorematica!.
6. Categorematical, or Significative terms, or fu h fimple terms, as do by themfelves fignifie fomething perfectly; and thefe are either Nouns or Verbs.
7. A Noun, is a fimple term or word, which doth fignifie fome certain thing without deftinction of time; as, a man, a borfe.
8. A Verb, is a fimple term, which doth lig. nifie fomething, with fome deffinttion of time paft, prefent, or to come; as, he runneit.
9. Syncategoremstical, or Confignificative terms, are fimple terms, which of themfelves do not fgnife any certain thing, or

Cbe Englih $\mathfrak{a x t a x m e}$.

conititute a Propofition, but being joyned with other Words, are fignificative, to exprefs the manner of fueh a thing; and fuch are all Words which ferve to exprefs the quantity of a propofition ; as, all, none, fome, $\not \subset c$. with all Adverbs, Conjunctions, Prepofitions, and Interjections.
10. The parts figned are three; the fubject, the predicate, and the Copula.
11. The $\int u b j e c t$ is all that which precedes the Copula in the Propofition.
12. The Predicate, is all that which is fpoken of the fubject.
13. The Copula, is the principal Verb, joyning the Predicate to the $\int_{u b j e c t,}$, and in e very Propofition is fome perfon of this Verb Subftantive, as in this Propofition, A Man is a living Creature; a Man is the Subjett; aliving Creature is the Predicate; and the Verb is the Copula ; fometimes the Copula is fome Perfon of a Verb Adjective; as in this Propofition, Socrates lived at Athens.

Here note, that the fubject doth not always precede, and the predicate follow the Copula, in order of the parts or terms, but in fenfe and conftruction; and alfo, that in fome Propofitions, the three terms are not always expreft, but implyed; as, I walk,for I am walking.
14. Propofitions are diftinguifh'd tbree ways, according to Subftance, Quantity, and Quality.
15.A Propofition, in refpect of the fubftance or parts of which it doth confift, is either Casegerical or Hypothetical.
16. A
16. A Gategorical Propofition, is that which doth confift of one fubject, one Predicat c, and one Copula; as, a man is a Living Creature, and this is either Pure or Modal.
17. A Pure Categorical Propofition, is when the Predicate is purely affirmed or denyed of the fubject, without expreffing the manner of affirming or denying.
18. A Modal Categorical Propofition, is when befides the fubjeit, prcdicate, and Copula, we add fome modification, to hew how the Predicate is in the Subject, as, it is.necefSary ; it is contingent, it is poffible; it is impoffible that a man fhould be mithout reafon.
19. An Hypothetial Propofition; s that which doth confift of two Categorical Propofitions, joyned together by fome Conjunction, as, if a man be a living Creature, then a man is a Body.
20. A Propofition, in refpect of Quality, is difinguifhed two ways; firt, according to the Quality of the fign, and fo it is Affirmative or Negative; fecondly yaccording to the quantity of the thing; \& fo it is either True or Falfe.
21. A Prapofition, in refpect of Quantity, is univerfal, particular, indefinite, or fingular.
22. An Univerfal propofition, is that which hath a note of Univerfality added to a common or univerfal Subject ; as, eviry man is a Living Creature.
23. A particklar propofition, is that in which a note of paricularity is added to an univer $\int_{a} l$ Subjeet ; Sabject; as, fome main is an Living Creative. 24. An Indefinite propoftion, is that, in Which no note, whether Univerfal or Pariticular is put before the univerfal Subject; cas, a man is a Living Creatiore.

1. $25, \mathrm{~A}$ Singutar propofision, is that in which the fubject is fingular, whether it be a proper Name; as, Secrates is a Philofopher; or whether it be a commonnaine, with a note of:/ingularity fet before it ; as, tbis man is Learned.
2. Pare Categorical propofitions, as they have reference to one another, have three affections; Oppofition, eEquipollency, and Converfron.
27.0ppofirion, is the repugnancy of troocategorical propofitions, either in quantity alone, or in qualityalone,or elfe in quantity and qua--lity both, in which there is the fame $\int u b j o t$, the fame predicate, and the fame Cofula, as, eqery max is juft, no wan is juft.
3. The sategsrical propofitions, may be faid to be oppofite four ways; Contrarily, Subcortrarily, Subalternately, and Contradictorily.
4. Two propofitions, that are contrarily, and fubcontrarily oppofite, are oppofite only in quality; and fuch as are fubalternately oppofite, are oppolite only in quaxtity; and fuch as are contradicterily oppofite, are oppofite . both in quantity and quality.
30.Oppofiticn, by way of contrariety, is the repugnancy of two Univerfal Propofitionsin quality; as, every man doth run, no max doth run;

182 The Englif academy. and the fe ina contingenmatter, may be both . False, but cannot be both together true,
31. Subcontrary Oppofition, is the repugnandy of two particular Propositions in quality ; as, forme man doth run, Some man doth not rus;and there in a contingent matter may be both true, but cannot be both together Falfe.
32. Satalternate Oppofitiex, is the repugnancy of two Affirmative, or two Negative Propofitions in their quantity; as, every man darth run, forme man doth run.
33. Contradictory Opposition, is the repugnancy of two Proportions, both in quality and in quantity, fo that if one of them be Affirmative, the other hall be Negative, if pone be Univerfal, the other hall be particular; as, Every man is Learned, Some man is zoo learned: All which may be early appreheaded by the following Scheme.

Every mam is learned. No man is learned:
 Some man is learned. Some man is not learned

34 eAgnipolincy, is the equivalency of two Propofitions, in fenfe and fignification, thongh they differ in Words, by virtue of this Word of Negation (not) being fet before the Sign and Subject, after the Sign and Subject, or both before and after, in which there is the fame Subjett, and the fame Predicate; as, fome man is Learned; not every man is Lexrmed: The feveral yarieties whereof are fully expreffed in thefe Diftichs.

> If afier fign and fubject, this (not) be, Contraries then, make eAquipollsncie.
> Only before mak contradictories,
> Bur 'fore and aft' are fubalternate guife
35. Converfion, is an apt mutation of the whole fubjcta, into the place of the whole Prodicate, and of the whole Predicats, into the place of the whole jubject, keeping the fame Quality, but fometimes changing the Quantity; as, Every man is a Living Creature ; Some Living Creature is a man.
36. This Corverfion is three fold;

1. Simple, in which the predicate is chan' ged into the place of the whole Subject, and the Contrary, keeping the fame both guality and quantity; ${ }^{3} 3$, No man is a Stone, therefore no fons is a man.
2. By Accident, in which the whole predicate is changed into the place of the whole Subject, and the Contrary, keeping the fame Ii 2

Quality,

Quality, but changing of the Quantity; as, Every man is a living. Creature, thexefore fame Living Creature is a man.
3. By Contrapofition, in which the whole Subjed is changed into the place of the whole predicate; and the contrary, keeping both the fame Quality and Quantity, but changing the terms from Finite to Infinite; as, Every Man is a Living Creature, therefore'every ithing that is a Leving Creatiwe, is not a man: What Propofitions may be converted this or that way, thefe Verfes do exprefs.

> E $E, I I$, Converfion Simple make. AT, EO, of Accident partake. $4, A, Q O_{7}$ for Contrapofits fake.

And what the \dot{e} Letters $A, E, \dot{I}, Q_{;}$do fignifie thée Diftichs do declara:

A; aformes, E, denies both wniver $\int a l$ are, I; ajfirusi; O, denies, bus boit particulat:

4

CHAP.

CHAP. III.

of Difinition and Divifon.

HAving done with the firft part of Logick, namely, that which treateth of Themes.
I come now unto the fecond, called the Organical, or that which treateth of Lagical Inftruments, and their Compofition.
2. Lagical Inftraments are four; Definition, Jvifon, Argumentat ipns, and Methoid.
3. Definition, is the explication of the thing which is defired; and this is either Nominal, or Real.
4. A Nominal Difinition, is that which freweth the Signification of the Name; whether it be by giving the Etymalogy thereof, or by expreffing it by fome other Synonymous word more generally known.
5. A Real Definition, is that which theweth what the thing is; and this is either perfect or imperfect.
6. A Real and a Perfect Difinision, is that which doth, explain the thing by Efentiat Attributes.
7. A Real, but Imperfect Definision, otherwifecalled a Defrriptions is that which explains the Nature of a ching, by certaisi Accidental Attributes.
8. Dirifion, is the Deduction of fome thing
thing that is large, into a Atraighter and narrower comprehenfion ; and this is either of fome ambiguous word, in:o its feveral fignifications, and then it is catled Diftixttion, or of the whole into its parts.
9. The whole is either Simple, or Aggregate ; Divifion of the whole, fimply and pro? perly fo called is three-fold.

1. Univerfal into its fabjective parts, or of the General into the Specials; as, to divide Animal into Man and Beafr.
2. Effertial, which refolves the whole into effential parts, and this either of a S. ies into its θ crus and Difference, or of fome fpecial nature into its matter and form ; 2s, A Man inte Soul and Erady.
3. Imegral, which refolveth the whole into Integral parts, and this is the Divifion of fome individual, cither into its fenfible or material parts.
4. Divifion of the aggregated whole into its parts, and by Accident is five-fold.
5. When the Subjed may be divided by its Accidents; as, Men are Learned or Unlearned.
6. When an Accident may be divided by its Subjects: as, Feavers ave in tho Spirits or in the Humours, or in the folid piarts.
7. When an Accident may be divided by Accidents; as, Good ic either profiteble, hoo meff, or pleafant.
8. When things may be divided by their

Objects; Sound.
5. When Caufes may be divided by their Effects; and the -Contrary; as, Howventf - heas is fram the Swn; and Elementary from Fire.

CHAP. IV.
 Of Argmmentation.

A Remmentation is an Oration by mbich -

1. A Problem, is the propofition or Queftion to be proved; the which Problem, when it is fo proved is the Conclufion, and follows the llative note, or note of inference: All that which precedes is the Antecedent, that which follows is the Confequent or Conclufion $;$ the lliative is commonly. this word (therefore, and in this doth the tye or force of the Argument confift.
2. Argumentation, may be confidered either in reference to the form and manner of Arguing, which is the more general confideration; or as it is reftrained to certain matter, as thall be thewed in his place:
3. The kinds of Argamentation are ufual1y reckoned to be four; Syllogison, Indultion,

Entymann, and Fxample, bat may be reduced to two ; for an Enthymeme is nothing -but an imperfoft Sylogifom; an Exaimple, an - imperfect Induction; Other lefs principal kinds of Argumentation there are, which either are of no ufe, or may be reduced to a Sylegifm; as, Sorites and Dilemma, which are indeed redundant Sylogifms; Serites Categorical, and Dilemma Hypothetical.
4. A Syllogifm, is an Oration, in which fomething being taken for granted, fomething elfe not granted before, is proved or inferred from them.
5. A Sjllogifin is two-fold, Categorical, in which all the propoftions are Catcgoriant: or Hypothatical, in which ore or more of the propofitions are Hypothetical; in !both which we are to confider the Matter sad the Form.
6. The-Matter of a Syllogifm, is either Remote or Next.
7. The Renote matter, is that of which it is : remotely made, as the Simple Terms which in the propofitions of the Syllogifin are made Subjed and predicate.
8. The Si mple Terms of a Syllogifm are three, of which one is called the Middle Term, the other two are the Major and the Minor Extreanas, The Major and Minor Extreams are the Predicate, and the other the Subject of the queftion ${ }_{3}$ and the Middle Term or Argument, is the Term not cxprefled

Ctye Englifh sicabemy.

prefiod is the queftion, but is united once to the Majer Extream, and once to the Minor.
9. The next or immediate matter of a Syllogifm, is that of which the Syllogifm is immediately made, as the three propofitions, which are made of the fimpleterms, of which the firft is called the Major, the fecond the Minor, \& the third is calpd the Corclafion. ro. The form of a Syllogifm is the right difpoing of the two-fold Matter, Next and Remote, and this comprehendeth two things, Figkre, and Mood; the one, to wit Figure, hath refpect to the Remete Matter or Simple Terms, and Moods refpects the next Matter or the propofitions.
11. A Figur, is the fit difpofing of the middle Terms with the Extreams", in refes rence to fubjection and Predication; this is three-fold.
12. The firt Figure maketh that whick is the middle fmple term to be the fubject in the major propofition and the Predicate in the minor.
113. The fecond Figure, maketh the middle fimple term to be the Prodicate, both in the major and the miver propoftions.
14. The third Figure maketh the middle fimple term to be the fubject both in the major and the minor propofitions; according to there Diftichs.
Buth sub and pra, doth the firft Figure afe. Twise pre the next, the thind tyice 保 1 muffe :

15 . A Moad is the difpofing of the proo: pofitions according to quantity and quality ; 16. There are 19 Moods, of which there are nine in the firt figure; fone in the fecond; and fix in the third, according to thele Yerfes.

1. Barbara, Celerent, Darii, Ferio,Baraliptan.:

Colantes, Dabisis, Fapefme, Fricefomorum.
2. Cefare, Cameftres, Eeftine, Bareca,
3. Darapti:

Fclapton, Difamis, Detijo, Becardo, Ferifon.
17. There moods are 50 many words of Art, which ferve only to denote the qualit 7 and quantity: of every propolition, by help of the Vawels, $A, E_{2} I_{2}, O_{3}$ as bath been: Thewed already ; and are. Fame of them porfect, as the four firt Moods in the fixe Figipre; and all the monds ir the fecond and third Figures; the reft are imperfecta.
18. And the quaftion gropounded is pro-: ved by or inferred from the premifes by help of thero moods two ways, viz. Diretilys and Indirsctly.

1. Directily, when the K isnor Exerean is the \int ubject in the Canaboffons, and, the Majow in the Prodiaate.
2. Indirsctly, when the 1 dajou Exteram in the fubjoct in the Conclufion, and the Mimon the Predicate, and this is'in the five talt maods ofthe firfefigure only, aecosdingea there Diftichs.

All the Nimeteen direttly do conclude, Exceft of Figure firft, the laft 5 Mood.

19. Thefe things premifed, a Syllogifn. mady be made in any Mood and Figure in. this minner.

The queftion propounded is always the conclufios of the Syllogifm, and by the quans. tity thereof doth plainly fhew in what mood or moods it may be framed, and by confequence, in what Figure alfo.
20. If the Syllogifm be to be made in.fuch a mood as doth direetly infer the Conclufion from the Premifes; then the Jubjeat in the Propofitior is the Minor Extream, and the Predicate the Major; as in the four firft moods of the firlt Figare, and in all the Moods of the fecond and third Figures; but in the five laft Moods of the firf Figure, the fukject in the Propofution is the Major Extream. and the Predicate the Miner: and the middle term is the Caufe or Argnment by which the truth or falfitie of the propofition is to be proved.
21. The Middle Term or Argument bets ing joyned to the Mijor: Estreum, doth make the Major propofition a and being joyned ta the, Minor Exiroim, it-maketh the:minor propofiti-: ORT.

Example.

Let this be the Propofition, N, Max in a fame: This Propofition being an Univerfal Negative, the Syllogifm may be framed in Celarent, Celantes, Cefare or Cameftres; if in Coherent', man is the Mine Extream, and Stowe the Major ; and to find out the middle Term, I confider of fame Reason or Argus-. mont by which to prove the Question ; as, A Man is not a Stone, becanfe be is a Living Creature; fo then Living Creature is the Middle Term, and thee three Terms being thus placed;

Middle Term.

Living Creature.

Miner Extredm. Man:.

Stone.
Because Celarent belongs to the firf Pipare, the middle Term Living Creature mart be the Subject in the Major Propofricom; and. the Predicate in the Minor; thus,

Subj.

Brad.
Major. Living Creature.-_ Minor. Living Creature. Conclu. No man is a Stone.

And joyning this middle Term to the Major Extream, and alfo to the Minor; the feveral Propofitions will be thefe;

> Major. A living Creature is not a ftone. Minor. A man is a living Creatwre. Conclu. A man is. not a ftone.

Lafly adding the Quantity to every Pros' pofition according to the Vowels in thisMood, the Compleat Syllogifm is,

Major. $2 C_{e-}$ Noliving Creature is a fone. Minor. Sla Everyman is a living Creature.: Conclu. rent. No man is a flone.

The like may be done in the other moods.
22. An Enthymem, is an Imperfect Syllogifm, inferring the Conclufion from fome one Propofition only; as, A man. is a living Creature, therefore be bath a foul.
23. An Induction, is an Imperfect fyllogifm, in which from many fingulars, fome Univerfal Conciufion is inferred; as, This man is a living Creature, aind that mana is a living Creature, \&C. therefore every man is aliving. Creature.
24. Example, is an imperfect fyllogifm, in which from one or more fingulars, we infer another particular; as, Catilime wer punifhed
for making of Sedici-n, tbereforg tkis, Saciticus Fellow fhoutd be punifhed.
25. Sorites, is an imperfo a fyllogifm, in which, from four or more Premifes, we infer a Conclufion, in which the firft fubject is joyned with the laft Predicate ; as, Sacrates is a main, a man is a living Crcature, a living Creature is a Bod', a Body is 'a. .ubffancr, therefore Socrates is a fubftence. :
26. A Dilcnima, is an Argumentation whicin by disjoyning of the Members, doth fo enforce the Adverfary, that which part foever he choofeth, he will be catçhed, as, Trikute muft be given to Cæfar, or to God; If to God, then not to Cæfar, and this is Treafon; If ta Cxfar, then not to Cod, and this is Sacrilidoe.

And thus much concerning afyllogifm in the General, with the feveral kids and forms thercof.

CHAP. V.

Of A Material Syllagtfm:

IComenow to fpeak of a Special or Matrial fyltoyifm it is conftrained to ccrtin 6 onditions of Matter.
2. A fpitial or waterial fyllogirm, is of
th: ee
three Eorts; Aodicticat, Dialeitical and Sophificicil.
3. A: Apidictical fyllogifm, otl:erwife called a Nemon/tration, may be defined two ways ; either from the end, or from the matter of Demonflativn.
4. From the end of Dembuftation, an Apodifticel $\int_{j l l} \mathrm{gig} \mathrm{im}$, is a fyllonifin begetting knowledge, or making to know. Ard we are then faid to know a thing, when we know the caufe for which it is fo, and cannot be otherwife.
5. All Knowledge is of fuch Conclofions, to which we alfent, for ourpreceding knowleige of the Premifes; and the Precognita in every Science are thefe threc: The ${ }^{2} u b$ jret, the Affction, and the Caute. And the means by which thefe are foreknown, are called Pracognitions, and they are two; That a thing is, and wotsat athing is.
6. The $\int a b j e c t$, is the lefs Extream, in a Demonftration, concerning which fome accident is. Demonfrated by its next Calife; as, a mant, concerning whom toe neuft know both that be is, and what be is.
7. Affetion or Paffion, is a proper accident; which is Demonftrated of the fubject; by a proper Canfe, it is always the greater Extream, which is Predicated to the Conclu-. fion; as; Rijibility, the which is neceffary to be foreknown, in refpect of its name, What it is, but not, that it is ; for that is the thing
to be enquired after, the thing we are to find by Denomination.
8. A Canfe, is that by which the Affection is Demonitrated of its fubject, and is always the Major Propofition in the Demoultration; as, Every rational Arimal is rifable; what the Canfe is cannot be foreknown, becaufe it is a compounded Propofition, but it ought to be known, That it is, or elfe the Conclufion cannot be inferr'd from it.
9. An Apodittical fyllogifn, being defined from the matter of Demonfration, is a fyh $\log i \int m$, which proveth ins Conclufion from fuch Premifes, 80 are of themfelves fufficiently known.
10. A Demonftrasion, is to be confidered, cither in refpect of the Matter or in refpect of the Form.
13. In refpect of the Matter; one kind of Demonftration, fheweth why the Predicate is inherent in the fubjedt, and another theweth that it is inherent in the fubject.
12. In the firf of thefekinds of DemonItration, called the Demonfiration caufal, why a thing is; the Conditions to be obferved, do partly belong to the Queftion, partly to the Canfe or Medium of the Demonfratien, and partly to the Premifes.
13. Every Queftion doth not admit of the firft and moft perfect kind of DemonAtration, called, Why a thing is? but fuch a Queftion only as is true, and hath a certain and immutable Caufe of its own Truth.
14. The Médium of a Demonftration, ought to be the next Caufe of the Predicate; and that cither Efficient or Final, and the Efficient either Internal or External.
15. The Conditions to be obferved in the Premifes of a Demontration, are Abfolute or Rclative.
${ }^{16}$. The Abfolute Conditions are two; the firt is, that the Propofitions be neceffarily true and reciprocal; The fecond, is that they be immediate or firft, in refpect of the fubject; as, A man is Rational, and in refpect of the Canfes; as, That mbid is ration nal, is vifible, a man is rational, Ergo.
17. The Relative Conditions to be obferT Cd inreference to the Conclufion, are three. 1. That the Premifos be the Caufe of the Concluffan. 2. That they be before it: and 6. That they be more known than the Conclasfion.
18. The other lefs principal kind of Demonitration in refpect of the Matter, or the Demonifration what, is two-fold, the one is from fome fenfible Effect, and the 0 ther from a remote Caufe.
19. The form of thefe Demonftrations, is defcerned partly from the Qaantity, and foit is Univerfalor Particular; Partly from the Quality, and fo it is Affrmative or Negative ; partly from the manner of the proof, and fo it is Ofrenfive, or by Reduction to Impoffibility.

CHAP. VI.

Of a Topical Syllogifm.

HItherto we have fpoken of a Demon. frative fyllogifm, whofe matter is neceflary, and the end a perfect Knowledge come we now to a Diatectional or Topical jyla $\log i f m$, whofe matter is Probable and Contingent, and the end Opinioir.
2. In a Diatectical, or Topical $/ \mathrm{y} \|_{\mathrm{og}} \mathrm{i} \mathrm{m}$, we are to con'der of Problems, Propofitions, and Invention of Arguments.
3. A Problem or Qiefion, is the thing of which it is probably difcourfd; and the Conckution of a fyliogifin already made.

4 Diatritical Propofitions, ought to bs certain, at leaft probable, and not Paradoxes; now that is faid to be Probable, which not being abfolutely trae, doth feen to be true rather than faife: And that is frid to bea Paradox, whichis true, though contrary to the vulgar opinion.
5. For the invention of Argaments, we are to confider Common places and Ruties.
6. A Place, is common Note, by whote help an Argument is found.
7. A Rule or Canen, is a Propofition, containing a Dialect cal syllogifm.
8. Arguments are of two forts, "Artificial and Inartificial.
9. Artificial Arguprents, are fuch as from the confideration of the parts of a Problem, are not found but by Rules of Art.
10. Inartificial Arguments, are fuch as are found without any help of Art, and thefe are nothing but Teftimonies.
11. Artificial Arguments, may be raifed from thefe feven $T_{\text {opicks or } H e a d s . ~ 1 . ~ F r o m ~}^{\text {and }}$ the Caufe and the Effct. 2. From the fubject ard the Accident. 3. From Difictar. and Comparifon. 44 From Conjugates and Notation. 5. From the Whole and its Parts. 6. Fromicrrus and Species. 7. From Definition and Divifian.
12. A Caufe in General, may be defined to be that, by whofe power a thing is.

An Argument therefore from the Caufe, is when in a probable fyllogifin', the middie terni is the cayfe of the Major Extream.
13. There are two kinds of Canfes; Ine ternal as the material, or matter, of which a thing is made; and the Formal, by whict a thing is ; as, The Shape and form of afthtue.

Externat, as the Efficient, which doth bring the thing to pars; and the Fizal or End, for which a thing is done.
14. An Argumert from the Efficient Caufe, is when in a probable fyllogifm, the tream: as, The Earth is Diametrically interposed between the Sun and the Moon, therefore the Moos frat be eclipsed.
15. An Argument from the Final Cause, is when in a probable fyllogifm, the middle Term is the Final Candle of the major Extram.
16. An Argument from the material cause, is when in a probable fyllogifm, the middle Term isthe material cause of the Major Excream, or the Genus or Species thereof.
17. An Argument from the Formal Cause, .s when in a Probablefyllogifm, the middle Term is the Form, Definition, De/cription, or Difference of the major Extream.
18. In the Topics of the fubjeft and the Accident, we do not take the subject for the fubftance, in which the Accident is inherent, or the Accident for that which doth precifety and adiquately adhere to the fubfansc; but subject is here taken for all that, to which any thing not belonging to its effence is attributed: And Accident is here taken for any fuch attribute, as, Number is the subject of Equality, that is, it is an Accident of an Accident.
19. An Argument from the fubjett, is as oft as the middle Term in a Probable filogifm, is the $\int \bar{u} b j e c t$ of the major Extream.
21. The third General Topick for the Invention of Arguments, is from Deffentainies and Comparison.
22. Dis-
22. Deffentanes, are either Oppofites or Difarates; as, a Hor fe, and a Ball: There are four kinds of Oppofites; Relative, Centrary, Privative, and Contradiitory. Comparifons are either in refpect of quality; as, like and ualike, or in relpect of quantity, or alfo of degrees; as, equal and nncqual; and what ever may be faid to be more or le β or equal.
23. An-Argument from Diffentanies, is when in a Probzble Syllogifin, the ariddle Torm is oppofed to the Major Extream, whether it be by way of a Difparate, or a Contrery, or otherwife.
24. An Argument from Comparifon, is as oft as in 2 probable fyllogifm, one part of the Major propofition is compared with the other, in reference to their agreement or their difagreement.
25. The fourth general Topick, for the Invention of Arguments, is from Conjugates and Notation. And they are properly called Conjugates, which for the affinity of ggnification, have alfo an affinity in the Voiceor Sound; as, $1 u f f$, Fuffice, and fuftly; fome Conjugates are only Nominal, and fome Real, and fome both, and do comprehend Denominatives under them, and are either fubftant ives where one is a Noun fubftantive abftradted from the $S_{u b j c t}$; as, fuftice, Th ; or Adjectives, where they be both Denominatives, or Concretes, whicis. Mm

Ghen
thew the form in the Abitract; as, fuft, Fuffly. Notation or Etymology, is the Explication of a Word by the Original thereof; as, a Conful, from Counfeling the Com-mon-Weals b
26. An Argument from Conjugates, is as oft as in a prohable fyllogifm; the one the Conjugates in the major propofition, is the fubjict of the major Term; as;: He that dorb Fuftly is Fnft.
27. The firl General Topick for the Inventing of Arguments, is from the whole and its parts. And an Argument from the thing divided to the divided members, is as oft as the thing divided is the middle. Ter m, and the dividing Members the Major Extream, in a Probable Syllogifm. And an Argument from the dividinga Mepbers, to the thing divided, is as oft as the dividing Members are the middle Term, and the thing divided the Major Extream.
28. The fixth General Topick, is from Genwi and Species; And an Argument from Genus and Species, is when we prove that 2 thing doth not agree with the Genus, becaure it doth not agree with the .pecies; or that it doth not agree with the peccies, be'caufe it doth not agree with the genus.
29. The feventh General Topick for the Inventing of Arguments, is from Definition, and Divifion. We raife an Argument from the Topick or Definition, when we leek for

The Englih acheray.

the Definition of either Extreani, that is, of the Subjetf or the Predicats in the queftion, which being found, is put into the place of the Mean; that it may be known whether the Extreams hould be conjoyned or feparated; thus we prove that Peter is a man, becaufe he is a Rational living Creature, We argue from the Topick of Divifion, when we Thew fomething to agree with the dividing Members, becaufe it agrees with the thing divided, or not to agree with the thing divided, becaule it doth not agree with any of the Dividing Members.
30. Inartificial Argwments, are only fuch as are raifed from Divine or Humane Te ftimony. And an Argument is raifed from Teftimony, as oft as the Authority of him that beareth witnefs, is the middle Term, agreeing or not agreeing with the Major Extream.

CHAP. VII.

Of a Sophiftical Syllogifm.

ASophistical Syllogy/m, is a Captious'Argumentation, which is feemingly, or: apparently true, but is indeed deceitful.
2. Sophistical, or Fallacious Arguing, is either in refpect of the Words or of the Things.
3. Fallaciesin Words, are five; Ambiguitic, Amphibolie, Compofition, Divifion, and Figure of a Word.
4. Fullacies in things are feven, Accident, Of a thing fpoken after a fort, to a thing fpoken Simply; Ignorance of the Argument ; a falie or wrong Caufe, Confequent, Beginning of the Queftion, and an asking of many Queftions.

क)

CHAP.

MEthod is the difpofing of thingsbelonging to the fame Matter or Subject, fo, as that they may be beft underftood, and eafieft remembred.
2. Method is two-fold, Natural or Arbitrary: 3. A Natural Method is that, in which the order of Nature and our diftinct Knowledge is obferved.
4. In a Nataral Method, we mult fpeak firit of Generals, and then of Particulars; and as we proceed from one thing to another, every part mult have a dependence on that, which was laft fpoken of by fonte apt tranfition.
5. A Natural Method is cither Totah, or Partial.
6. A Total Matbed is that, in which a whole Science is Methodically ordered or difperfed. And this is either, Synthetical, or Analytical.
7. A Synthetical or Compoffitive Meshod is that, which begins with the firt and moft fimple Principles, and fo proceeds to thofe, which do arife from, or are Compofed of the firtt Principles.
8. An Analytical or Refolutive MEthod, is Na that
that, which begins with the end, and fo pro: ceeds.ftill lower and lower, till we come to the firt and moft Simple beginnings.
9. A Partial Me hoa' is that, by which any part of any Art or Science is Methodically ordered or difpofed : or by which any particular Theme or Subject is handled by it felf.
10. An Arbitrary Mcihod is that, which not regarding the Natural order, is fitted for fuch a confufed Knowledge, as may be moft taking with the People, or fute beft with their Capacities.

And thus much concerning Method, which is the fourth and laft Logical hiftrument; and with this I ball conclude thefe my Logical Precepts, and laft Part of my Englifh Academy: He that defires to be more fully acquainted with thefe Arts and Sciences, may for all, but Mufock, Read my other particular Tracts of thefe Subjects, till fome body that hath more knowledge in them, fhall furnifh us with more ample and perfect Inftruciions; and as for Mufick, I am much of Opinion,thatMr. Playford's Introduction may very well ferve, to Inftruct our Youth in the firt Principles of that excellent Science; For which, and all other helps of Learning, To the only Wife God, be all Honow axd Glory, now end for ever. Amen.
FINIS.

The Art and Mistery of

NAVIGATION;

As to Obfervation in taking Heights, \&c. Sailing the Sunary mays, \&c. And other ufeful matters worthy of sote to Navigators, \&c.

A
Mongft the many Undertakings, that redound to the Advantage of Mankind; Navigation is very confider= able; for on it depends not only the Welfare of private Perfons, but of Nations and Kingdoms, as being Enriched and Improved in knowledge by it: Wherefore it is highly neceffary to fpeak fomething of it in this Treatife of Arts and Scienses, that: may Inftrut the Unexperienced, and, perhaps, improve the knowledge of the Elder PraCitioners.

In the Treatife of Aftronomy, ycu find the names of the Star9, and many other things neceffary to be taken notice of in Navigation; for on that Art much of this depends; efpecially in taking the Suns height or Meri= dian Altitude, and the Elevation or height Nn 2
of the Pole, as being the Computation or Diftance in Latitude from the Equator, either North or South, or any other Imagined Parralel, as we find Eaft and Weft is the diftaice of Longitude, where ever the Meri. dian is found, there mult confequently be computed an equal diftance on either fide of it; fo that the Meridiax thus confidered, the Rumb muft be fo likewife, for that leading from place to place, may be termed the diftance run upon fuch a point of the Compals. And to come nearer the taking of thefe diftances and heights are the prineipal things to be obferved in this Art as to the Carrying a Ship to any Country and Port, and knowing at any time where you are, and all thefe (according to the greateft Proficients) are more clofely, or briefly comprized. I. In the difference of the Latitude. 2. In the difference of the Longitude. 3. The Rumbs. 4. The diftance run upon the Rumb.

Now if two of thefe be known or given, the two that remain may be eafily found, the firlt by Obfervation, and the laft by Trigonometry, or Arithmetical Calculation, \&c. And in further confideration of thefe things, to find the Latitude or Elevation of the Pole, you mult obferve the Meridian Altitrode either of the Sun or Stars, and though there are many ways defcribed to do this, yet what enfues is found the mott plain and eafy.

Da it by the Aftrolabe or Quadrant in this

Cher Englifhataremp.

manner, viz. by what we call backward obfervation, and not troubling your Eyes with looking through the fights, permit the Sun to shine through the fight, that is next to the Center, fo ordering it, that the beam may fall directly upon the hole of the other fight, by which means the thread will fall upos the right Altitude in the Quadrant, or the Index in the Aftrolabe will in the fame manser divide the degrees of Altitude.

If the Sun mine not, and you are defirous to find its Meridian Altitude, you may do it by informing your felf of the declination and Latitude; And upon this obfervation, if you find the declination North, then add to the Complement of the Latitude, which you willever find to be the fame with the height of the 压quinoctial, but on the contraty, if it be a. South declination, then fubtrant from the Complement of the Latitude, and that will at any time give you the Meridian Allisude. As put the cale we find in any place the Elevation of the Pole, that is the Latitude to be 52 degrees, the complement thereof to 90 degrees, is 38 degrees, which likewife is found to be the hiight of
 that on May 2. the Sun being 20 degrees, 24 minutes of Tawrus, his declination Northo ward is 117 degrees, $56^{\prime} 21 \mathrm{~s}$. which, when you add to 38 , brings the Suns Meridian Ald titude to be 55 degrees, 56 minutes, and N $\mathrm{n}_{\mathrm{B}} \mathrm{C}$

12 feconds

12 feconds, but if this be required to be found when the San comes to the IEquinoCtial, either on the 13 of Sepiember, or the it of March, then the height of the ftars or fun, when they are upon the Meridian, will hew the trueLatitnde if fubtracted from 90 degrees, but at other times you mult find out their declinations, and if it happen Northerly, fubtract it from the Altitude, but if Southerly, you muft add it to the Altitude, by which means you will find the beight of the Equinoctial above the Horizon, and Confequently fubtracted from 90 digrees, will give you the true Latitude of the place where you make your Obfervaticn.

If by the Globe yourare defirous to find the Elevation of the Pole, take the Suns Moridian Altitude, bringing the Suns place in the Ecliptick, or the Stars to the Brizen Meridian, and fo move that Meri/ian with the Globe through the rotches it fands in, till you find the flars, or the funs places Eleva* ted as many degrees above the Horizon, as their Moridinn Altitude is; and whilf the Globe ftands in this pofition, you may be confident the Pole will be Elecated to a true Latitude of the place.

As fappofe you find the Suns place in the beginning of Cancer, whiclr may be the 12 . of $\boldsymbol{F} \mathrm{mne}$, and the Wheridian 'Altitude of the fan is 62 degrees frem the place where you are to make your obfervation, then bring the firft degree of the fign Cancer to the Meridian, and Elevate the fame Co $_{2}$ degrees above the Horizon, and you will find the Pole Elevated 51 degrees and 30 minutes.

The next thing in Navigation to be canfidered, is the finding the Longitude, which could it be brought to perfection, failing would be far more eafy than it is, and difcoverys of yet unknown Countrys, Rich perhaps as either Inalias; but indeed, though many have attempted it, and gone very far, they have never brought to perfection, however, for the light of the Navigator, we will confider fome things herein.

Suppofe the Moon to be Eclipfed, obferve - how much fooner it begins at a place of known Longitude, for which fearch the E phemerides, theri at the place where you ftand, and obferving your Latitude by the ftars, as has been directed, the true hour of the night may be found; which done, obferve the difference of time of the Moons beginning to be Eclipfed, or its middle or endings, at the place where you make your obfervation, which fpaces convert into degrees and minutes, which added or fubtracted from the hour of the beginning, middle or end of this Eclips at a place of known Longitude, thefe degrees and minutes in their difference between the hour at one place, and the hour at an other, added or fubtracted from the degrees and minutes of the known Longitude,
you will find then give the required Longitade.

If the Moon be not Eclipfed, which Eclips cannot be expected upon every occafion, then you may obferve it by the Sun and Moons motion, as thus; fuppofe, and it is granted, that the Moon is Qower in motion than the Sun 48 minutes, in 24 hours, or 360 degrees, then by the help of Mathematical Infruments, find the true Meridian in any place, fuppofe the Weff-Indias, \&c. you muft alfo find the hour of the Moons coming to that Meridian by the Epbemerides, or other helps; and this being calculated for London, you find by thofe helps, that on fuch 2 day the Moon comes to the Meridian, at four in the Afternoon, and you being the fame day in the Indias aforefaid, you find her come to the Meridian 10 minutes palt 4, whereupon confider by the Rule of Propore tion, that the Sun and Moons difference in motion, being 4^{8} minutes in 36 degrees, what will it come to in ten minutes, or if 48 gives 360 , confider what ten gives, and the fourth proportional number will be 75 d . and fo much is the diftance of that place in India from London, and the longitude of London being fubtracted from that number 20 degrees, and $5 s$ Remainder again fubtracted from 360 , what remains produces the longitude to be 305 . Some other ways are laid down to prove a knowledge of the longitade,
gitude, but the whole matter being in a manner in the dark, thefe may fuffice for an Experiment.

But in plain or circular Sailing, the Compals is very mach heeded, but fometimes there may be miftakes by the variation of the Needle, which you may Rectifie by the Globe, in this manner; let the Suns place bè brought to the Eaft fide of the Horizon, and obferve the Circle of Winds, and then againft the Suns place you have the point of the Compafs, whereon it rifeth, and fo proceed to take nutice upon what point it rifes or fets, obferve then the difference happeniing by the Globe, and by the Compals, and. if there be any, that is the Variation, for which Variation, allowing that the Neeile will ever fhew the Rumb, which is the true point of the Compafs, as to the fteering the Ship.

If you would know how much way your Ship makes in fuch and fuch fpaces of time, this you may oblerve by the Logline, or Minute Glafs, and by the firlt fo many knots as fhe ruas in half a minute,fo many Miles is The counted to Sail in an hour, or it may be done by hanging up a Bullet in a \&ring, which will connt the Minutes by its fwinging, for if the Itring be proportioned to $38 \frac{1}{2}$ Inches, it will fwing about 60 times in a minute, but if longer not fo many, and therefore it is left to your difcrecion, to propor- neceffity) may ferve turn. -

If you would find the Suns Amplitude, and thereby the variation of the Compafs, oblerve, That as the Proportion of the Cofine of the latitude is to the Radius, the fame you will find the fine of the declination to that of the Amplitude, as, It being granted the Latitude of 31 degrees, 23 mi nutes, its Cofine, or Complement, is 38 de grces, 28 minutes, and the declination of the Sun 15 degrees, io minutes; the Am plitude then will be found 24 degrese, 52 minutes North, by reafon the deelination is fo. As for the Circumference of the Compars dividd into 360 degrees, obferve when the Sun rifes and fets, how many degrees it is from the direct point of the Amflitude, fo much you will find the Needle vary in that place.

As for this kind of Navigation it is vul garly propofed in three manner of ways, or Methods, efpecially, as relating to private Seamen as plain Sailing, Mercators way or Inftruction of Sailirg, and Sailing by an Archor great Circle, ca'ed Circular Sailing. The plain way of failirg is by a plain Chart, which is the moft fubftantial, and that on which the other are grounded, and to thofe that fail near the 压quinoctial, thiey have little or no occafion for any other Way,
way, as having their degrees of Latitude and Longitude equal, each degree divided in to 60 minutes, and each minute put for a Mile, yet fomewhat exceed the Englifh meafirred miles, as containing about 6000 feet ; but if you are to come far from the 压quinoctial, then though you may keep your Latitude in plain failing, yet you will be at a lofs for your Longitude, and therefore to be better informed, confider that as the Radime or whole fine of 90 degrees, is to 60 Miles, fo you will find the Cofine of the latitude; is to the Miles contained in one degree of longitude in that latitude, fo that in the las titude of 60 degrees, 30 Miles make 2 degree; as fine godegrees to 60 Miles 10000 , fo Cofine 60 degrees to 30 Miles 5000 and by this sule we find, that if your departure from the Meridian was 280 Miles, and they being divided by 60 , reduced into degrees and minutes of longitude under the EquinoCtial, it yields 4 degrees and 4 minntes, bat if thefe 280 Miles happen to be Eaft or weft, or your departure from the Meridian fhould be in the latitude of 60 degrees, where 30 Mules make a degree of longitude, then divide the 280 Miles by 30 , and you will find it yields 9 degrees $\frac{1}{3} \frac{\circ}{\circ}$, or one thirds. which is 20 minutes for the difference of longitude in that latitude. To fail by Mercators Chart, is little other than coming to a knowlfdge of the true latitudes, Meridians,
and Elevations of the Poles, Miles, minates; otc. as when it fo fall out that one place is under the Equinoctial, and the other nearer ane of the Poles, then we find; the Meridional minutes, anfwerable to that place, which hath latitnde, is to be Accounted for the Meridional difference of latitude, or that latitude inlarged.

Again, fuppofe both places are towards one of the Poles, thereupon fubtract the. Meridional minutes that are found anfwering to the leffer latitude, and the remainer will be found to be the Meridional minutes required.

Again, if we find one place to have North latitude, and the other be in South latitude; then add the Meridional minutes, appertaining to either place together, and you: will find the fum thereof to be the Meridioaal minutes requited, orc.

Circular failing is held to be a very good way of failing, as the beft, thewing the neareft way and diftances between any two places, yet carrys with it fome littte difficulty, fo that the Seamen feldom keep to their courfe near this Arch; wherefore leaving you to confider of what has been faid. I proceed to other ufeful matters.

Horology, or the Carious Art of Dial. ing made plain andeafy in defcribing, and directing the pofitions of the Surndry forts of Dials now in ufe; alfo to know by a Sun-dial the time of the night by the Moons Jbaddow.

DIaling is a very Curious AR T, and requires much Care and Indufiry to come up to it in all Points ; for of Dyals there are fundry forts, varying in fomewhat or other, according to their Places, Pofitions, and the Suns Degrees, fone are movable, and may be carryed from place to place, others fixed, and are found to be Regular, or Irregular:; the Regular are fuch as are on a Plain, direetly towards one of the Eminent parts of the world, as full Wert, or full Eaft, but the Irregular are thofe that have no direct pointing to any principal quarters of the world, but rather declines them.

Of thofe called Regular, they have many names to diftinguilh them ; as, The Meridian Eaff, The Meridian Weft, The Horizontal Dial, TheVertical Nortbward, and the Vertical Southward, The exguinotial below, The exquinoctial aboye, the Polar below, and the Polar above.

The Horizontal, is when it is equally diftant towards the Horizon.

The Veribal, is a Perpendicular erected above the Horizon, tending direotly towards the. Vertical point, being Parallel to the Priuniry V'ertisal Circir, and is duplex, as North Verrical looking to the other which is Soutb Virtical.

The Eaft and Weft Meridians have particularly either of them their feveral ways, being equally. diftant from the Meridian Circle.

The exquinoctials mentioned are thofe of which either have their feveral ways equally diftant from the efquator, the one atove and the other beneath the Horizon.

The Polars lave likeverife their different ways, the one being beneath, and the other above, they are found as Parallels to the Worlds Axis.

The Irregular are cither inclining, or declining; the firft of thefe is equally diftant from any Virtisal Circle, and from thence is often called Vertical, though declining from the Primary Virtical, properly fo named, and is of two forts, there being one declining from the Scuth to either Eaft or Weit, and the other from the North to either Eaft or Weft.

That which inclines falls away from the V ertical Point, having its inclination toward the Horizon, is not being equally diftant from it.

As for the hours which thefefeveral forts
of Dials, are to parcel out time unto, they are Reckoned as to the days they make divers, according to the diftant Latitudē, the Suns afcending or deciining, yet all allow 24 hours to the day and night, dividing each hour into 60 minutes, and thofe into 'Feconds parts, ard fmaller propottion of time, tillit can be diferned oilly by imagination. The days are held in two diftinctions, the one natural, and the other Artificial, the Natural day is accounted 12 hours the Artificial as many as the Sun allows e:ther the longer or the jeller it fines.

But to be an exact Horologian, obferve thefe methods, be fure to have the exact E. levation of the Pole, which to find, you are directed in the treatife of Nuvigation, for by that your determination af the C enter of hours mult be had alfo the Itile of the Dial's Altitude, and the order of it, and whatever is requinte befide of that nature; you muftlikewife know the true Me, idian line, that fo the Dials Meridian line may have its place directly under the Meridian of the place where it is pofited. And he that andertakes this work, muft be furnihed with fach Mathematical and Aftrononical Inftruments and Materials, as may give him a due underftanding of the proportions of time; as a Rule, Compars, Atronomical Quadrant, divided exaclly into go degrees; with a defcription of the hour line \& points

$$
\text { Pp } 2 . \quad \text { and }
$$

and to bring this Ingenious work to perfeEtion, you muft te careful the figures of the hoursare fet attieir proper and proporionable diftance to anfwer the moving of the ftiles thaddow, and that your ftile be well concrived as to its Form and Altitude, and make your obfervation to. fix it exactly;alio be very careful in the Application and Dif pofition of the Dial when it is finifhed.

But to come to what is more curious, be fure the hours be defcribed, and to do it there aregranted to be two right lines fecting each other at right Angles crofs ways, one of them being the heridiak line, or the 12 th hour line, the other is terined the Occule line, by which the firft crofs ways are cut to the right Angle, and this is generally called the line of hours, becaufe in it the. horary points are defigned, but if we come to its more proper denomination, it may be called the 压quinoctial line, fince it reprefints the 压quinoctial Circle, the chief rule of all hours,

Thus much being explained as to Dialing, in general, we come now to more particnlars.

If you are defirous to have a right Dial, you mult be fare to know its right Center, or the Center of the hour, to do which, be very mindful of the Elevation of the Pole, efpecially in the Horizontal Dial, or any of that fort, for they will not declare the hours
in any place, buit under a certain Elevation, and therefore if they aro removed far, you muft be again proportioned to that Elevation Conjecture we then, the Pole be Elevated 49 degrees in this Region, which is 41 , place here the foot of your Compals in the Inftruments Center, extending the other foot from that to the Equinoctial line deferibed in the inftrument, where in that part the 41 degrees is cut by the Radim, fo numbering from the 12 th hour line, and tranffer this extenfion of the Compals upon the Dial,having yet the Compafles foot fixed in the Meridian, and Equinoctial lines, concourfe, and the other fix in the diftant part of the Meridian line, determining, that point to be the hours Center, and fo from thence, and each point in the 不quinoctiar line, you are to draw all the lines, which fome term, the Arshes of hours. And further a line is to be drawn through the Center of the hours, a line Parallel to the 不quinoctial, and this is to be accounted the line of the fixth hour, as well in the Evening as the morning, as likewile ofthe hours of 4 and s in the Evening, are to be drawn out beyond the Center of hours, for the like hours in the morning, and fo of the reft, equally compeering; and thus you have an exact defcription of a Horizontal Dial, whofe figure you may form as you pleafe, placing the Characters of the hours at the end of the line.

If you defign a Vortical Dial, it pay be done upon a Regular wall, the fame way as the former, yet there is fome difference to be obférved, not only inthe Scituation, but likewife in the V ertic. $z l$, in cafe of being cer- tain of che Center of the hour, the Polar Elevation degrees are to be here taken for the Altitude of the ftile, allowing the degrees complement, though the Horizantal Dial is the contrary; bowever, there being a diftinction between a Vertical.to the North, and a Veritical to the Soutb; the Vertical to the Nortb is, as we may fuppofe, a Mcridian Inverted, baving the Comter of hours downwards falling fhort, in thewing fhort, in hewing the hours, for in fome Adjacent Countreys, it thews'bot from 4 to 8 in the moraing, and the like in the afternoon, and the Soutb Vertical hath the Center of hours and its.file upwards, thewing from the fix in the morning to noon.

A Mhridiorial Dial either Eaft or Welt, for the firt, it muft have a line $P a$: vallel drawn to the Herizemand a flight Circle at any opening of the Compars, beginning from the Horizental line towards the right fide where the Eaftern Dial is to be drawn, conceiving in the Intrament fach an Arch at the like opening of the Compais, in which Arch cut off the Eleversion of the es. quator, and carry the interval to the Circle drawn from the point, and allow the Arch to be cut off.

To frame an exquinoEtial Dial, two lines muft be drawnat right Angles, whereof one : is to be the Moridian, the other that of the hour, 6 morning and erening, and from the ufual festion of thefotines, draw a Circle'. as you think fitto be divided into 24 proportionable and equal parts, for in this kind of Dyaling, alt the Intervals muft be equal as to the hours:

The Polax Dial gaes' Parallel to the Axis of the world, lyinges it were in it, and is to be Elevated above the Horizontal Plain, the fame degrees as the:worlds pole, the lowermolt part ia many places, containing not above 4 hours, yet generally the morning hours are 4 .and 5, towards the left fide the Evening hours 7 and 8, but the topmoft fhews the houps from 7 in the morning to 5 in the Evening, but not the fixth by reafon the Sun then is parallel to the Dial glanking then uponits fide.

A Dial of Irregular Declination may be beft managed by the Muriners Compafs, and applying the $S \in m i$-Circle divided in the P lan to a competent number of degrees, the pin or ftile placed at its Center, fo that in that Meridional hiour, you will perceive the degree the fhaddow cuts; and the way it calts, by the which you may the better determine the fpecies, and how it declines; by which obfervation, you may draw a Dial in any place, fixing your ftile of
what Magnitende you pleafe at right Angles.

If you are defirous to find by the thining of the Moon, the hoor of the night upon a Dial, fuppofe you have a Horizontal SunDial, movable or fixed, joyn to it a Dial, by fome called a Moon Dial, made up of two Concentrick Circles, where in one you will meet with the day of the Moons Age, by applying a G lobule to the number 30 , in the other, the 12 hours diverlly fet down; then knowing the Moons Age, fo place your Sundial, that the Moon may fairly fine on it, and being placed as for the day, fee what hour the Moon fhaddows on, as fappofe the 8, then place the Globule, the hour you find fet downin the Horary Circle, and then again having recourfe to the Moons Age, it will give you the hour required, as fuppore it be the 1.2 of the Moons Age, you will find the fladdow about s and a half, which is the time, if (as it frequently happens) the Moon Dial be compofed of 3 Cextrical Circles, whereof the lait and greatef be that of the Moons day, the next to it the hour Circle, and the inmoft the Index; let the Index be applyedwa the day of the Moon, and then by that Circle, obferve whit hour, or part of an kour the fladdow marks ${ }_{\infty}$ and you will find the true content.

Planimetry, or, The mop Exact and: Curiows Ants of Surveying Lands, \&c. after the neweft and moft Experienced Method and Practice, \&c.

PLanimetry, or Surveying, is nambered among the Curious; and deferves worthily here to take place; and to be exact in this, have (befide other Inftruments proper to the matter) a Ruler of about 7 or 8 Inches long, and an Inch and a half broad, and place two Scales, one of 12 , and the $0-$ ther of 11 , in an Inch defcribing a line of Cords 2 Inches long, or fomewhat lefs than - 60 or 90 degrees, the Radius of which or 6.0 degrees, being equal to the Semidiameter of the fame Circle, and after the order of thefe on the other fide, place feveral other fcale which may be of $16,20,24$; or the like in an Inch, whereby you have an Inftrument neceliaty for fundry occafions, and for this fcale in its ufe you mult be provided with a pair of Brafs Compalfes, alfo a curious pair of Calem Compafles, having fcrews to alter the points, as to draw as occafion requires to the beautifying the Plats with black Lead or the like ; being provided with Inftruments, and all things fitting for meafuring, you mult confider the Meafures, and reduce that which is called $\mathrm{Sta} \rightarrow$ ces of this Kingdom, this has been altered by the varying of Perches in the number of fict, as, 18, 20, 24, and fometimes 28 foot ta the Perch, and this requires the Surveyers diligence to reconcile the one te the other, of which we fhall give fome infight.

Suppofe you are to Reduce 5 Acres, 2 Rocds, 20 Yerches meafured Statuté mea. fere by 18 foot the Perch, in this cafe feek the leaft proportional terms between 18 and 16 foo and a $\frac{1}{2}$, and to effect it, becaufe the latter carries with it a fraction, reduce it into halves, and that they may be of one denomination, let the 18 foot be. Jikewile halved, and you will find them in this manncr $\frac{3}{3} \frac{3}{6}$, which you muft abbreviate by 3 , in faying, how many times 3 fhall I find in 33, and the Anfwer will be 11 tims 3, and the farre do by 36 , and you will find it 12 times 3 , wand thereupon the two proportional terms between $36 ;$ and 18 , will appear to be 11 and 12, which being done, reduce the Given Quantity of 5 Acres, 2 Roods, and. 20 Perches, all into Perches, by which means you will find thein to be 900 Ferches; then obferve what is the Proportion, the Square 11 , which

Chbe Engliha acracmy.

227
which is found 121, bears to the fquare 12, which is found 144, the fame does the Acre containing 16 and a half feet to the Perch, bear to that that contains 18 feet to the. Perch or Pole.

Always obferve, in this was particularly that the greater mealure is to be reduced into the leffer, then multiply the Quantiy Given, viz. 900 Perches by 144 the: 3rger fquare, and you will find the Product to be 129600 , and that divided by 121, you will find the Quotientto be 1071 Perches, and $1 \frac{9}{2}:$ parts, which reduced into Acres, gives us 6 Acres, 2 Roods, and ${ }_{3}{ }^{1}$ Perches, and ${ }^{\frac{9}{2}}$ parts of a Perch, and this compeers with the Quantity of Acres Parallel with Statute meafure; but on the other hand, if it had been required for the reducing Statute Meafure into Cultomary Meafure, you muft then Multiply 900 perches, your given meafure or quantity, by 121 , which is the lefler fquare, becaufe. 1 the leflir is to be reduced into the greater, and you will find the:Product to be 108900, which if you divide by the greater fquare 144 , you will bave the Quotient $756 \frac{4}{4}$, which being reduced into Acres, is 4 Actes, 2 Roeds, $36 \frac{1}{2}$ Perches; and this rule is to be taken with what ever Cuftomary quantity is propofed in their differencce, and degrees, as when the Perch is $2 \mathrm{e}, 24$, or 28 foot, or other difproportions of num-: ber.

228
 The Englifh gcabenv:

If in this Menfuration, you are required to reduce Perches into Acres, and fo on the contrary, obferve that by the Aforementioned Statute, an Acre of Ground fhould contain 169 fquare perches or poles, being every Rood 4 fquare perches, fo than if you find any number of perches, that muft be done into Acres, the given number muft confequeatly be divided by 160 , and the Acres are fhewed by the Quotient, but if there be any remainder, and it be under 40 ; they are perches, but if they are founds to exceed 40, divide by 40 , which you will find to be the number of perches contained in a Rood, fo that the Quotient will be Roods, and the Remainder Perches.

But to reduce Acres into Perches, therg is no great difficulty, confidering it is bus tarning it as it were backward, for in the other to bring Perches into Acres; the diy vifion was by 160, but in this cafe, to turn Acres into Ferches, it muft be multiplied by 160 , which being obferved, we come now to more nearer particulars, as to the matter in hand. If the piece of ground you meafire be fquare, having confiderec well that the Acre is 160 Perches, then maltiply one of the fides by the other joynti irg to it, \& you will find the fum is to be di. : vided by 160 , and fuppofe your Ground ? be 40 poles one way and but 20 another, thefe multiplyed, make 800 . Poles or Per-

The Englifh acabemt.

ches, which divided by 160 , hnews 5 Acres to be the content.

In meafuring a Triangular piece of Ground, you mult fint obferve to meafure the longett fide of the Triangle, as alfo the Perpendicular oppofed to the faid "ong fide, then multiplying the half of one $3 y$ the whole of the other, you muft diyide by 160 .

Suppoife the frde be 60, the Perpendicu. lar 40 ; 60 muft be multiply'd by, 20, or 40 by 30 , which fo done, make 1200 , which being divided by 160 , renders 7 Acres and $\frac{1}{4}$ for the true content.

If you are to meafure that which we call a Trapezia, or a double Triangle, then Soth the Perpendiculars muft be multiply'd. "3y the Diagonal Line, as being the ufual or common Bafe of both the Triangles, and f. 3 ult be divided by 160 in this manner. Let ${ }^{£}$ he Diagonal Line be 40 , and one of the - erpendiculars is, theother 8 , which beEing pat together make 23, which being nultiplyed by 20 , which is half the Dia4 tonal Line, make 460, and that divided \because - 160 , renders two Acres, three Roods, 5 nd 20 Poles.
,. If the Ground be Circular, then half the iameter mult be multiplyed by half the \because ircumference, and the product divided ${ }^{3}$ ny 160 , whereby the Diameter of the Circle being found to be 140 poles, the CircumR r
feretice
ference is 440 poles, and the half of thete two producing 220, and 70, they are to bé multiplyed together, and then produce 15400 Perches, which being divided by 160 produce 96 Acres and a $\frac{3}{4}$.

If the piece of Ground given, be Oval,〔uppofe it to be 30 Perches one way, and 40 the other, ro know the content. multiply the length 40 by the bredth, Fwluch as aforefaid is 30 , and you will find it make 1200, which again divided by 203 s $\frac{2}{0}$, and you will find it yield 5 Acres, 3 Roods, and 23 Perches, and by this laft number fo working, you may find the number of A_{-} - cres contained, in a Semicircle, a quarter or fixth part, or any feation or divifion of a Circle greater or leffer, multiplying the half Diameter.

If you are to meafure wood Land, which is the difficulteft of all, you may fix a mark at either corner of the Wood; that 3 marks may be feen at once, "thén having a Quadrant in your hand, lay it flat thereon, and take fight to two of the marks on cach fide, and ther upon paper, mark the degrees of the Angle, and meafure to the two marks in fight, and place them on the came paper by your line of equal parts, and do fo to all other corners, till you have clofed up the Plat or Wood, which then may be eaflly brought into Acres by the line of equal parts. And Note here, if your Quadmant be too fmall, you may joyn two together, or do it by a board for want of a plain Table, fo your Plat upan the - paper make 3 Triangles, and to meafure one of them, neafare for one Triangle the longefi doted line, by half the middle doted line, or Perpendicalar, which gives the content; and by. fo working the other two Triangles you have: compleated it.

232 C挽 Englih ataverny.

The Art and Myftery of Gauging Verfels of Sundry Forms and Quantities, by. Exact Rules laid down plain and eafie : Alfo to Gauge and know the Burtben of any Sbip, and ather matters.

GAuging is very neceflary to be unI derfood by all People that deal in Commodities, wherein Casks, or the like, give the Dimenhons of theireMeafure; wherefore, for their better Infruction in this Art, there are two things principally to be confidered:. Firft, That pecing Verfels are moftly of Irregular Forms, it muft be the care of the Gakger, to confider how they are to be reduced to Regular Proportions ; and, in the Second place, to inform: himfelf, of the true content of the Gallonin Cubick Inches, or parts of a Foot; and: for the firft of thefe, carefully Meafure the Diameter of the Cask at the Bung and Head, and, by thofe Diameters, to find: out the Afea of their Circle, and fo take 2 -thirds of the Area at the Bung, and third at the Head, which, being added, will be found to be the mean Area of the Cask; and if you multiply that Area by the length of the Veffel, it will hew how many folid Inches are contained in that Yeffel,

Veffel, which being divided by the number of Cubick Inches in one Gallon, the Quotient will demonftrate what number of Gallons the Cask holds.

As, if we fuppofe that a Veffel of Wine be 18 Inches. Diameter at the head, and 32 Inches at the Bung, the length being 40 Inches, if you wonld be fatisfied in the content, confider, that one third of Area at the head, is found to make in its due proportion $85, \$ 23$

And twathirds of the Area of the Bung, make - 536,166

And then comfider the fum of the two, to be $-620,909$

When Multiply'd by thelength -40.

959

Makes Inches folid $\quad 24839,560$.
Therée being divided by the folid Inches in one gallon of Wine, they being 231 Inches for the content, yield 170 Gallons, $\$ 30$ parts, which is fome fmall matter $2-$ bove half a Galion, yet fome raife a-difpute about the certain number of Inches in a Galion, yet the Wine Gallon is generally concluded to confiit of 231 Cubick; or folid Inches, and the Ale Gation is held by many in Compatation with the Wine Gallon_{2} as 4 to 5 , fo that in fuch a degree of. difference, it muft be $288 \frac{1}{2}$ Inches, but upop the impofition of Excife, it has been

Rr. 3 gene-

generally Eleecmed but 282 Cubick lai ches.
If you wonld know the cantent of any Wine or Beer in Ale or Bear Gallons, obGerve for the Beer Barrel.

The diameter at the head, 9 inches, 9 parts Far the diameter at theBuag, 23 inch.oparts The length ——— 27 inches, 4 pirts The kildersin has for its mead rings, The diameterat the head, 16 Inches, I Fart Its dianseter at the Bung, 18 inch. 6 parts The Lergth $\quad 12$ inches, 1 part.

And thefe are called the Cooperss Feantlinges, and very well agree, with the received guantity of the Ale Gallon, allowing: it to be 288 Inches and a half, fo that the Barrel this was reckoned to be a Pint over 36 Gallons, and a Kilderkin a Pint and as halfover the half of that, thoweh as I haye Gaid, this Gallan has lately beep agreed up: on by a Committee of Excife, to hold no , more than 282 Cubick inches.

Now to meafuce Brewers Veffels, ofc? whether they be Square or Round, or of any other form: Firf, to know their tree Content, obferve what has been faid in Meaforing fich Bodies, dividing by 282 the inches in one Gallon, demonifrates the content in Gallons, and if you divide the Gal.
lons.
lons by 36 t the contents in Batrels are flewed, and fo by krowing the true mumeber of Inclies, any meafure is to be takien.
If jor would 'kinow the Burthen of a Sthip, 'or how many Fun fthe wall hold, or Commodiound carry: Firft, inform your self by meatiare of the length of the Reel; and take the breadthat the Mid.-hip beaie. Ind the depth of the Hold, and there three you'mait multiply one by the other, thea the prodict theferf maft be divided by 100 , and fo the T ums of Burthen will be plainly ' demoniftrated.

As, grantingthe length ofa Ships Keel to be 50 品 breadth 20, and the depth in the hotd ten foot, then to know how many Tuns the will carry, let $\varsigma 0$ be multiplied by 20 , and it makes 1000, and that again maltiplyed By ro, mikes roooe, the which, when divided by 100 , and catting of the two laff Figures, it thews the Ship to be 100 Tuns of Butthen; but this way is ufually attributed to Men of War, but for Merchant Sbips, they give to Allowance for Mafts, Sails, Ordnance, and Anchors, the which, though they are a Burthen, yetare not accounted Tunnage; wherefore, as to Merchant Ships, your product mult be divided by 95 , and then a Merchant Ship, of the aforefaid length, breadth, and depth, will be found $\therefore 105$ Tuns $\frac{5}{5}$ 年 parts Burthen, though there moft
mult be regard had in this care, to the mio dle of the Skip, for fear of Erring, and if you are doubtfal whether you are right or not, if the Ship be Irregularly built, find out how many Cubick Feet it contains, and Reckoning that a Cubick Foot of water, weighs, as it is generally accounted, 55 Averdupois, or 16 ounces to the pound, to that confider 2000 weight being allowed to the Tun, and every hundred 12 th. the Dimenfions muit be taken accordingly, and by this Rule you muft take your proportion : Bat to come fure of this another way.;

Meafure on the out fide the Ship to her Lightmark, when The is in the Water unladem and there you will find the, weight or content of the Empty Veffel, fo that if you take your meafure from her 'Lightmark to her full drauglit of 'Water, being Laden, you have the true Burthen of her Tunnage. Alfo, if your re defirous to know the Burthen of another Ship double or treble of the fame Mould, or a greater or leffer proportion, maltiply the meafure of the Length, aid Breadih, arid Depth Cubically, after that is done, double or treble the Cubei, and Extracting the Cube Root, your work is done, and fo you may go on to other matters of this nature, or any other belonging to Gaingine, which your Rules and Inftruments of direaion will furnifh you, in your procedare, đure, when you are once thus far eintered, and by degrees it will become eafy, if you caf a Method in your mind.

Exal Rulles and Direations for Fortiffication, Regular and Irregular for War, offenfive or Defenfive, Outworks and Inward Strengths, \&c.

Fortifcation is of great moment, and in the well obferving and Reguiar performing it for defence and offence, many times confifts the Safety of Countries and Kingdoms, hawever the Scituation and Circumftances require much Variation, fothat to prefcribe the Models of all Fortifications would be Endlefs, and therefore it will be moft convenient to treat of the modern, or thofe moft generally in ufe.

Obferve then of this kind, your works require to be Flanked to keep the Enemy from a fudden Entrance, where any Breach is made by the great Guns, for if the Befiegers have made their approaches fo near, that the Befiegeds Cannon in the Front are difmounted, .then you may be affured their defign is to put their Miners to pafs the Dich, and then if they perceive any place out of fight of the Befiegeds firing, they will have an opportunity to make their Mines ftions into liarp pointed ores, which not only upon occafion ferye for Flanker's to defend againft any hafty approdch, butt to llaunt and hinder the force of the great Snot playing againft the Town or Fort.

Amonget other things neceffery on this occafion, the great Line of defence is to be confidered, or what may be found near Equal into it, viz. the Folygon Imerimur, which ought not in moft cafes to exceed 120 Fathoms, or 720 Feet, and this is found to be a point blank of the Execation of a Mufquet, the Cannon being here Incomandious, and therefore the defence is to Le saken from the former, the latter befide the wafte of Ammunition, lying muchlyable to be difmounted, and not fo eafily again remounted, as the Emergency requires, and the difficulty is likewife greater in maintairing 2 contimual Fire, and if the work be not incommoded by their over largenefs, the more Capacious, the Gorges and Flanks are, the better will the Fortification: te found for defence, for then the Soldiers may pafs to and fro in a good front to the Wation, when Cannon is plansed on both
fides the Flank, and give no interruption to thofe that are at the Flanks, and if there be bate fuppofel mecefity required, there mouft be a vacancy left for Recrencbments, and a place under the Baftions left fit for Mining, thet if it coms to extremity when you have drawn off as foon as the Enemy has poffelled the baftion, it may be blown $u p, 8$ their X ttacque cleared till the Beficgel may know what is farther to be doase in the defense of the place, and draw cheir firengths from other parts thitherwards.

Above all, the Curtain Flanks and Faces of the oppofite Paftion are to be well fecur red and guarded, as likewife the Ditch and Counterfcarp being made as lage as the due proportion of the Raftion will allow, for if they be too great, their Capitals will be faund too long, and thereupon the defence Line exceed the Port of any Mufquer, or Imall piece. and being too little they will become blunt, and fo cut off the fecond Flank, whilf it ought to be held confiderable.

Thedegrees of the Angle of a Baltion, ought nat to be lefs thanoe, or more than ge, fome frall matter allowed over or under; and the reafonis, if it be misch under 60, it will be found too flender, or above 90 toolarge, or more than may be well fupplyed; and moreover, by that the fécord Flankis hortned, and it will be computed
in lefs Ground than the Baftion, where it isen Angle oflefs degrees, though built on the like Gorge and Flanks, and obferve in all your works to let them be Cannon proof.

If we proced to a defcription of RegnLer Fortification, it is to be underftood of fuch Models asiare equally Angular, and founded upon EquilateralFigures, to be de-fcribed-in a Circle, as it may be a Triangle, Quadrangle, or a Quartil Pentagon, or a Figure of 5 fides to a Dodeciagon, or a Figure of 12 fides, and in this cafe the Baftion mult be fo pofited, that all the points may anfwer in like diftance from the Centre. The Curtains of Equal Length, and all the Angles and Lines to be of an equal Magnitude for Regular Models are to be computed from a Calculation of the Angle at the Centre, and that is done by dividing 360 , the number of the degrees that a Gircle is ufually divided into, and wherein the Regular. Figure is to bedefcribed by the number of any Polygons fides, or the Regular Figure, that any Fort or Work of War of this nature is to confift on, for hereby the Quotient demonftrates the Angle of the Centre, as may be demonftrated by a Figure of five fides, wherein by operation, the Angle of the Center is certain to be 72 degrees, and the like of any other figure, then-if you draw a Circle with
the the Protractor, or Line of Chords, the firft being a Semi circle, and the laft the fourth part of a Semi-circle, or 90 degrees projected on a ftraight line, and the Angle befet off at the Center at 72 degrees, the Circle will thereby be divided into 5 equal proportions, or parts, and the flraight Iine drawn to the points, produces a Pentagone. Befides this Model of Fortification, Shere are fundry Outworks required for ftrengthening a place, they hinder muck the Befiegers from making their Lodgments if the ground happen to be low near the Counterfcarp, or from fuddeinly raifing Batteries by the advantage of that ground if it happen to be high; wherefore a carsful Enginier always provides Outworks to hinder it, and prolong the approaches to the main Fort, and thefe Outworks are various as the Situation of the place, or the danger requires.
Ravelins, being an ufual Outwork, they are ufually of two kinds, one with lines, and the other wanting;; the firft of thefe are placed before long Curtains, Whire the two Baftions are not capable of Flanking each other within Mufquet fhot, and the length of the Curtain not fufficient for tha erecting a Plate Baftion in its Cent ter, and fupply the defect of a Baltion by covering and defending, and to erect thefe kind, the Ditch mufbe cut parallel with from 18 to 20 Foles, and lit your Demigorges be no more than from 10 to 12 Poles the Flanks, from 8 to 10 , the Ditch furrounding them, and the ge geatncis of the Flanks Parallel to the face of the Ravelin till the ditch of the place of the face of the Bafion be met by it, that fo the Ravelins Flanks may fcowr over all the ditch that faccs the Baftion.

The Ravelins without lines, confift only of a Capital and two faces, the Cap tals from 12 to 18 Poles the face, e ging or drawing nearer t) the houlders of the Eaftion, that within the Ravelin may becommanded by the Curtain and two Flanks.:

The half Moen is a work ever raifed before the Baftions point, being fo named from the lownefs of its Gorges Cavity, of c. and is to fecure the two faces of the Battion, but when the faces have but a weak defence from the Ravelin, the efe works are foon made ufelefs, or ruired, and give the Befieged an opportunity of Lodgment, \& may ferve for Batteries and Flanks againft the or poling Bations, however, they may be retrencled by Traverfes, for they will not fail to attacque entirely in the face, or where you have your laft retrenchment, alfo, inat calId the Counterguard runs the like hazard.

The Ontworks, called the Hornwork', are placed before the Curtrin!s, a Perpendicular

Line being drawn from it at the two Flanks about 60 Pole front, towards the Campaign, their front to be 36 Poles, equal to the Curtain, to be divided into 3 Parts, one of them for the Curtain, and the other for the Demigorges, appertaining to the Hornwork, as for the Flanks, they are to be fix Rods, or 72 foot each, and this work is held one of the beft and ftrongeft Outworks, if w:fl manned and managed, efpecially when a Ravelin is placed before it.

The Outworks called the Tenalis, is built to fecure the Bridge when it is hard prefled upon their fides; containing so Poles, and the Fronts no more than 36, which being divided into 4 equal parts, a Perpendicular is drawn in the middle, whereon a $\frac{1}{9}$ of the front is fet off inwards towards the Town, and the Lires muft be drawn from the fides, to form the face; this work - is advantageous for Counter Approashes, and for receiving fuccours into the Town.

The Crownwork is nfually erected, a when heighth is fo near to the place, that a N_{u} fquct fhot may reach it, and then the fides of the works mult be extended before the Baftion, or Curtain about 65 Poles, \&the Demibaftions point to beabont 60 degrees, then the Extremities of the fides muft be joyned, and a Perpendicular Line raifed on the middle, on which fix, for the Capital, 18 Rods, making an A ngle of two Interinur Polygons.
$F \quad I \quad N \quad I \quad$.

Books Sold b er. Pafenger; at London-Bridga.

${ }^{\top} \mathrm{He}$ Elements of that Mathematical Art, commonly called Algebra; Expounded in four Books, by John Kerfey.

Lloyd's Poetical Dictionary, in Folio.
Clark's Examples, wd. Vol. Folio. Dr. Salmon's Polygraphice. — bis Syftema:Medicinale.

- his Select Observations.

Cocker's Vulgar Arithmetick.
All Mathematical Books.
Dr. Newton's Art of. Logick, and Rhetorick alone.

Davids Repentance?
Great Adze. $\}$ By Sam. Smith.
Davids bleffed man,
Lithgows 19 Years Travels, Second Edition.

The PreSent State of England, 3d. and th, parts: Containing, fir ft, as account of the Riches, Strength, Magnificence,

$$
-8)
$$

nificence, Natural Production; Manuo farture of this Illaned, with an exact Catalogue of the Nobility and their Seats; Secondly, The Trade and Commerce mithin. its felf, and with all Nations Traded to by the Englifh, as at this day eftablifbed; and other miatters xelating to Inland, and Marine Affairs: Wefulfor Natives and Foreigners.:

Markham's Maffer-piece Revived; Cont ainivg all knowiledge belonging to the Smith, Farrier, or Herfe-Leach, touching the Curing all Difeafes-in Horfes: arsd nosp in this Impreffon is added, the Complest Fackey, aprtaining the method: for the Training up of Horofes for Rating, with their beats aund courfes, and manmer of keeping; : alfo imftructions for the Buyers to avoid Cheating Hoor e-Casurfers, and all things veaffary for Gentleinin and ot bers.

Dr. Newton's Cofmagraphin, or a. view of the Globes, being amexplaration of the Principles of Geometry, why. ed to the Surreeying wedGugi g of Caisk; ta which is added art istradurion to Geograplay.

The Mirrour of Architecture, or the: ground Rules of the Art of Building, by Vincent Scamozzi; mberemsto is added, the defcription and we of an ordizary joynt Rule, with an Addition of Stair Cafes and Cbimizey Pieces.
The mbole Art of Navigation, in 5 Books, containing the Principles of Na vigation, Geometry, and Aftronomy with a large new Sinical Quadrant, the whole deliviered in a very eafic and famizLiar ftile, by way of Dialogwe between a Tutor and bis Schotlar: Approved by the Ableft Mathematicians, by Capt. Daniel Newhoufe, Publifbed by the Kings Comamand.

Clavis Commertii; or the key of Commerce, contaizuing an exact axd moft concife method of Merchasits Accompts, after the Italian manner, in owe bumdred propofitions, being the moof material cafes in proper Factorage, and Company Accompts, both Domeftick and Forreigst: Alfo a Practical Wafte Book, Yournal and Ledger, fitted for the ufe of Schools, the contemplation of Gentlemen, and the pracice of Merclants or ot thers, who defire
to be accomplifbedwith the famous art of Book keeping.
The marrow of the Mathematicks,contractedinsto a foul compass for the Poskt, and made plain and eagle to the armderft anding of as or dinary Capacity, contrimming the doctrines of Arithmetick, Geometry, Astronomy, Gauging, the we of the Sector, Surveying, Dialing, and the Art of Navigation, Illusftratedwith Several Cuts, after a New, Compendious, afr method.

Gazophylacium anglicanum, contaiwing the derivation of Englifb Words, proving the Dutch and Saxon to be the prime fountain, and likewise giving the Similar Words, in moot Europian Lassguages, fitted to the Capacity of the Engli b Reader, that may be curious to know the original of his Mot her Tongue.

The faurarisnTrilingue publicum: Be*ing an Introduction to Engli b, Latin and Greek in 2 parts: the firft Teaching Orthographia, and the escacteft way of Cointing yet extant. The $2 d$. cont raining a method for the more \int peed attaining to to the Greek Tongue, ard the truly accentting thereof.

The

The Compleat Servant Maid, or the Toung Maidens Tutor, being an excellentbook of Cookery, and teaching young. maidens how to qualify themelves for a : ny Employment : Whereinto is added a Supplement, containing the choiceft Receipts and rarejt Secrets in Phyfock and Chirurgery, the 5th.Edition corrected and amended.

Sir Samuel Morlands vade mecum,or the neceffary Companion.

Pbyffck Refined, or a little ftream of: Medicinal Marrow flowing from the bones of Nature, by John Yarwood Profeffor of Pbyfick. I be price lut fix pence.

The Patbway to bealth, wherein ate to be found moft excellent and approvedMedicines of great vertue, as alfo notavie Potions and Drinks, with the Art of Diftilling divers precious Waters, for making of ogls, and other comfortable Receipts for the bealth of the Boay:

The Famous Hiftory of the deftru:ions of Troy in 3 parts.

Thefaurus Peeticus.
Anglorum Speculum, or the Worthies of England in Church and State: ; Al.phabetically
digefted into the feveralSbires and Conn. ties therein contained, wherein are. Ill. Prated the Lives and Characters of the mop Eminent Men fence the Conquef, to the present Age. Alfo Account of. the Commodities and Trade of each Refpective County, and the molt flourifoing Cit es and Tows therein.

The Compleat Hor \int e-max and Expert Farrier in too Books : I. Shewing the bet manner of breeding good Herfes,with *heir choice, Nature, Riding, and Dieting, as well for Running as Hurting, and bow the Rider ought to behave bimpelf in the breaking and riding of Colts, as aldo zenthing the Groom and Keeper his true Of-
t fire, towabing the Horfes and Colts, committed to his charge. 2. Directing. the moot exact and approved manner, how to know and cure all maladies and diffsafes in Horfes; a work containing the fecrose and beft skill belonging eithersto Farrier or Hor (e Leach.

Abftractum Cbirurgice Marine, Or as 'abstract of Sea Chisurgery designed, for the ufo of Such Chirwirgeons whoa define to Serve at Sea, yet are marquatinted with

SenPraltioe, in order to their reftoring to health fick or pounded Seamen, in three Books; 1. Containing certain Ditections meceffary to be observed by the Sea Chyrurgean in bis fitting out : 2.Teachetb bow he gall perform his Chyrurgical duty being at fen, both in an Engagemsent and other times. 3. Inftruteth how. he muff Execute the Phyfical Office impofed on bins: By John Moyle.

Thefaurus Aftrotogice, or an Aftrological Treasury, containing the shoiceft Myferies of that Curious but Abfrufe Learning, relating to Phyfick, being the Collections and Experiments of a learned Phyfician and Aftrologer deceafed, whole name is not known; By John Gadbury Student in Aftrology and Phyfick.

Wingate's Rule of proportion is A rithimetick and Geometry, or Gunters Line wendy rectified, fitted for all Avtifts for Measuring and Building," whereinto is now alpo inserted, the comftruction of the fame Rule, and a farther use thereof in Queftions that concern Aftronomy, D_{i-} alling, Geography, Navigation, $\begin{array}{r}\text { Gan- } \\ \underset{g}{g} \text { n. }\end{array}$

(${ }^{\circ}$)

going of Veffels, Military Orders, Interef and Annuities.

At the aforefaid Shop, is fold, Pa per, Paper Books Ruled or Unruled: Also Bibles, and other Books, new bound and clafped: Alfo, Pens, Ink, Wax, Wafers, Pencils, Bonds, Releafees, Letters of Attorney for the Navy, Bills of Lading, of r.

FINIS.

[^0]: : 1. . .

